• Title/Summary/Keyword: Elman-Jordan model

Search Result 6, Processing Time 0.019 seconds

The Characteristic for Undrainded Shear Behavior of in Low-Plastic Silt and its Prediction (저소성 실트의 비배수 전단거동 특성과 예측)

  • Kim, Daeman
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.6
    • /
    • pp.61-70
    • /
    • 2008
  • In this study, undrained triaxial (CU) tests were performed on low-plastic silt of Nakdong River in order to investigate the undrained shear behavior of low-plastic silt. In experimental results, the deviator stress showed the hardening behavior after reaching its yield stress like the tendency of common sand, and the pore water pressure was gradually decreased to critical state after the maximum value. In the effective stress paths, regardless of consolidation stress or overconsolidation ratios, both a critical state line (CSL) and a phase transformation line (PTL) exist in the effective stress path that is similar to the case of sand. The behavior of low-plastic silt was predicted by the Modified Cam-Clay (MCC) model, the Jordan and the Elman-jordan model that is artificial neural network model. According to predicted results, the overall undrained shear behavior of low-plastic silt could not be predicted with the MCC model, but the Jordan and Elman-Jordan model showed well-matched experiment results.

  • PDF

The Improving Method of Characters Recognition Using New Recurrent Neural Network (새로운 순환신경망을 사용한 문자인식성능의 향상 방안)

  • 정낙우;김병기
    • Journal of the Korea Society of Computer and Information
    • /
    • v.1 no.1
    • /
    • pp.129-138
    • /
    • 1996
  • In the result of Industrial development. largeness and highness of techniques. a large amount of Information Is being treated every year. Achive informationization. we must store in computer ,all informations written on paper for a long time and be able to utilize them In right time and place. There Is recurrent neural network as a model rousing the output value In learning neural network for characters recognition. But most of these methods are not so effectively applied to it. This study suggests a new type of recurrent neural network to classifyeffectively the static patterns such as off-line handwritten characters. This study shows that this new type Is better than those of before in recognizing the patterns. such as figures and handwritten characters, by using the new J-E (Jordan-Elman) neural network model in which enlarges and combines Jordan and Elman Model.

  • PDF

A Study on the Settlement Prediction of Soft Ground Embankment Using Artificial Neural Network (인공신경망을 이용한 연약지반성토의 침하예측 연구)

  • Kim, Dong-Sik;Chae, Young-Su;Kim, Young-Su;Kim, Hyun-Dong
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.7
    • /
    • pp.17-25
    • /
    • 2007
  • Various geotechnical problems due to insufficient bearing capacity or excessive settlement are likely to occur when constructing roads or large complexes on soft ground. Accurate predictions of the magnitude of settlement and the consolidation time provide numerous options of ground improvement methods and, thus, enable to save time and expense of the whole project. Asaoka's method is probably the most frequently used one for settlement prediction and the empirical formulae such as Hyperbolic method and Hoshino's method are also often used. To find an elaborate method of predicting the embankment settlement, two recurrent type neural network models, such as Jordan model and Elman-Jordan model, are adopted. The data sets of settlement measured at several domestic sites are analyzed to obtain the most suitable model structures. It was shown from the comparison between predicted and measured settlements that Jordan model provides better predictions than Elman-Jordan model does and that the predictions using CPT results are more accurate than those using SPT results. It is believed that RNN using cone penetration test results can be a highly efficient tool in predicting settlements if enough field data can be obtained.

A New Thpe of Recurrent Neural Network for the Umprovement of Pattern Recobnition Ability (패턴 인식 성능을 향상시키는 새로운 형태의 순환신경망)

  • Jeong, Nak-U;Kim, Byeong-Gi
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.2
    • /
    • pp.401-408
    • /
    • 1997
  • Human gets almist all of his knoweledge from the recognition and the accumulation of input patterns,image or sound,the he gets theough his eyes and through his ears.Among these means,his chracter recognition,an ability that allows him to recognize characters and understand their meanings through visual information, is now applied to a pattern recognition system using neural network in computer. Recurrent neural network is one of those models that reuse the output value in neural network learning.Recently many studies try to apply this recurrent neural network to the classification of static patterns like off-line handwritten characters. But most of their efforts are not so drrdtive until now.This stusy suggests a new type of recurrent neural network for an deedctive classification of the static patterns such as off-line handwritten chracters.Using the new J-E(Jordan-Elman)neural network model that enlarges and combines Jordan Model and Elman Model,this new type is better than those of before in recobnizing the static patterms such as figures and handwritten-characters.

  • PDF

A Study on Speech Recognition using Recurrent Neural Networks (회귀신경망을 이용한 음성인식에 관한 연구)

  • 한학용;김주성;허강인
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.62-67
    • /
    • 1999
  • In this paper, we investigates a reliable model of the Predictive Recurrent Neural Network for the speech recognition. Predictive Neural Networks are modeled by syllable units. For the given input syllable, then a model which gives the minimum prediction error is taken as the recognition result. The Predictive Neural Network which has the structure of recurrent network was composed to give the dynamic feature of the speech pattern into the network. We have compared with the recognition ability of the Recurrent Network proposed by Elman and Jordan. ETRI's SAMDORI has been used for the speech DB. In order to find a reliable model of neural networks, the changes of two recognition rates were compared one another in conditions of: (1) changing prediction order and the number of hidden units: and (2) accumulating previous values with self-loop coefficient in its context. The result shows that the optimum prediction order, the number of hidden units, and self-loop coefficient have differently responded according to the structure of neural network used. However, in general, the Jordan's recurrent network shows relatively higher recognition rate than Elman's. The effects of recognition rate on the self-loop coefficient were variable according to the structures of neural network and their values.

  • PDF

A Study on the Recognition of Korean Numerals Using Recurrent Neural Predictive HMM (회귀신경망 예측 HMM을 이용한 숫자음 인식에 관한 연구)

  • 김수훈;고시영;허강인
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.8
    • /
    • pp.12-18
    • /
    • 2001
  • In this paper, we propose the Recurrent Neural Predictive HMM (RNPHMM). The RNPHMM is the hybrid network of the recurrent neural network and HMM. The predictive recurrent neural network trained to predict the future vector based on several last feature vectors, and defined every state of HMM. This method uses the prediction value from the predictive recurrent neural network, which is dynamically changing due to the effects of the previous feature vectors instead of the stable average vectors. The models of the RNPHMM are Elman network prediction HMM and Jordan network prediction HMM. In the experiment, we compared the recognition abilities of the RNPHMM as we increased the state number, prediction order, and number of hidden nodes for the isolated digits. As a result of the experiments, Elman network prediction HMM and Jordan network prediction HMM have good recognition ability as 98.5% for test data, respectively.

  • PDF