본 논문에서는 Extreme Learning Machine(ELM)을 이용한 자기부상시스템 모델링 기법을 제안한다. 자기부상시스템의 모델링을 위하여 일반적으로 테일러 급수를 이용한 선형화 모델이 사용되어져 왔으나, 이런 수학적 기법의 경우 자기부상시스템의 비선형 반영에 한계가 있다는 단점을 가지고 있다. 이러한 단점을 극복하기 위해 본 논문에서는 학습시간이 빠른 특성을 가진 ELM을 이용한 자기부상시스템의 모델링 기법을 제안한다. 제안된 기법은 입력 가중치들과 은닉 바이어스들의 초기값을 무작위로 선택하고 출력 가중치들은 Moore-Penrose의 일반화된 역행렬 방법을 통하여 구해진다. 실험을 통하여 제안된 알고리즘이 자기부상시스템의 모델링에서 수학적 기법에 비해 우수한 성능을 보임을 알 수 있었다.
본 연구의 목적은 라이브방송 전자상거래 플랫폼의 특성과 생방송 사업자의 개인적 특성이 생방송 시청자의 충동구매의도에 영향을 미치는 요인과 메커니즘을 규명하는 것이다. 본 연구는 ELM 모델을 기반으로 기존의 미흡한 내용을 심층적으로 조사하고자 한다. 본 연구는 온라인 생방송 이용자를 대상으로 설문조사 형식을 채택하고 SPSS, AMOS, Mplus 등의 분석 소프트웨어를 이용하여 실증분석을 수행하였다. 그 결과, 생방송 플랫폼의 특성은 소비자의 몰입 경험과 만족도에 의미 있는 영향을 미치고, 앵커의 개인적 특성은 소비자의 몰입 경험과 만족도에 의미 있는 영향을 미치고, 소비자의 몰입 경험과 만족도는 의미 있는 영향을 미치는 것으로 나타났다. 충동 구매 의도는 의미 있는 영향을 미치고 몰입경험과 만족도는 생방송플랫폼의 특성과 진행자의 개인적 특성에 매개효과가 있다.
최근 은행, 보험회사 등 핀테크 관련 업체에서는 챗봇과 같은 인공지능 대화 시스템을 고객상담 업무에 도입하고 있다. 본 논문에서는 금융 도메인을 위한 고객상담 챗봇을 구현하기 위하여, 자연어 이해 기술 중 하나인 고객상담 대화의 도메인 및 화행분류 방법을 제시한다. 이 기술을 통해 자연어로 이루어지는 상담내용을 이해하고 적합한 응답을 해줄 수 있는 기술을 개발할 수 있다. TF-IDF, LDA, 문장 임베딩 등 대화 문장에 대한 자질을 추출하고, 추출된 자질을 Extreme learning machine(ELM)을 통해 도메인 및 화행 분류 모델을 학습한다.
In this paper, we propose pattern recognition algorithm for activities of daily living by adopting extreme learning machine based on single layer feedforward networks(SLFNs) to the signal from bidirectional accelerometer. For activity classification, 20 persons are participated and we acquire 6, types of signals at standing, walking, running, sitting, lying, and falling. Then, we design input vector using reduced model for ELM input. In ELM classification results, we can find accuracy change by increasing the number of hidden neurons. As a result, we find the accuracy is increased by increasing the number of hidden neuron. ELM is able to classify more than 80 % accuracy for experimental data set when the number of hidden is more than 20.
최근 은행, 보험회사 등 핀테크 관련 업체에서는 챗봇과 같은 인공지능 대화 시스템을 고객상담 업무에 도입하고 있다. 본 논문에서는 금융 도메인을 위한 고객상담 챗봇을 구현하기 위하여, 자연어 이해 기술 중 하나인 고객상담 대화의 도메인 및 화행분류 방법을 제시한다. 이 기술을 통해 자연어로 이루어지는 상담내용을 이해하고 적합한 응답을 해줄 수 있는 기술을 개발할 수 있다. TF-IDF, LDA, 문장 임베딩 등 대화 문장에 대한 자질을 추출하고, 추출된 자질을 Extreme learning machine(ELM)을 통해 도메인 및 화행 분류 모델을 학습한다.
본 논문에서는 파킨슨 병 진단 및 바이오 표지자 검출을 위한 극한 기계학습을 결합하는 새로운 균형 표본 유전 알고리즘(SBGA-ELM)을 제안하였다. 접근법은 정확한 파킨슨 병 진단 및 바이오 표지자 검출을 위해 공개 파킨슨 병 데이터베이스로부터 22,283개의 유전자의 발현 데이터를 사용하며 다음의 두 가지 주요 단계를 포함하였다 : 1. 특징(유전자) 선택과 2. 분류단계이다. 특징 선택 단계에서는 제안된 균형 표본 유전 알고리즘에 기반하고 파킨스병 데이터베이스(ParkDB)의 유전자 발현 데이터를 위해 고안되었다. 제안된 제안 된 SBGA는 추가적 분석을 위해 ParkDB에서 활용 가능한 22,283개의 유전자 중에서 강인한 서브셋을 찾는다. 특징분류 단계에서는 정확한 파킨슨 병 진단을 위해 선택된 유전자 세트가 극한 기계학습의 훈련에 사용된다. 발견 된 강인한 유전자 서브세트는 안정된 일반화 성능으로 파킨슨 병 진단을 할 수 있는 ELM 분류기를 생성하게 된다. 제안된 연구에서 강인한 유전자 서브셋은 파킨슨병을 관장할 것으로 예측되는 24개의 바이오 표지자를 발견하는 데도 사용된다. 논문을 통해 발견된 강인 유전자 하위 집합은 SVM이나 PBL-McRBFN과 같은 기존의 파킨슨 병 진단 방법들을 통해 검증되었다. 실시된 두 가지 방법(SVM과 PBL-McRBFN)에 대해 모두 최대 일반화 성능을 나타내었다.
Emulsion Liquid Membrane (ELM) is a prominent technique for the separation of heavy metal ions from wastewater due to the fast extraction and is a single-stage operation of stripping-extraction. The selection of the components (Surfactant and Carrier) of ELM is a very significant step for its preparation. In the ELM technique, the primary water- in-oil (W/O) emulsion is emulsified in water to produce water-in-oil-in-water (W/O/W) emulsion. The water in oil emulsion was prepared by mixing the membrane phase and internal phase. To prepare the membrane phase, the extractant D2EHPA (di-2-ethylhexylphosphoric acid) was used as a mobile carrier, Span-80 as a surfactant, and Paraffin as a diluent. Moreover, the internal (receiving) phase was prepared by dissolving sulphuric acid in water. Di-(2- ethylhexyl) phosphoric acid such as surfactant concentration, carrier concentration, sulphuric acid concentration in the receiving (internal) phase, agitation time (emulsion phase and feed phase), the volume ratio of the membrane phase to the receiving phase, the volume ratio of the external feed phase to the primary water-in-oil emulsion and pH of feed were studied on the percentage extraction of metal ions at 20℃. The results show that it is possible to remove 78% for As(V), 98% for Cd(II), and 99% for Pb(II). Emulsion Liquid Membrane (ELM) is a well-known technique for separating heavy metal ions from wastewater due to the fast extraction and is a single-stage operation of stripping-extraction. The selection of ELM components (Surfactant and Carrier) is a very significant step in its preparation. In the ELM technique, the primary water-in-oil (W/O) emulsion is emulsified to produce water-in-oil-in-water (W/O/W) emulsion. The water in the oil emulsion was prepared by mixing the membrane and internal phases. The extractant D2EHPA (di-2-ethylhexylphosphoric acid) was used as a mobile carrier, Span-80 as a surfactant, and Paraffin as a diluent. Moreover, the internal (receiving) phase was prepared by dissolving sulphuric acid in water. Di-(2-ethylhexyl) phosphoric acid such as surfactant concentration, carrier concentration, sulphuric acid concentration in the receiving (internal) phase, agitation time (emulsion phase and feed phase), the volume ratio of the membrane phase to the receiving phase, the volume ratio of the external feed phase to the primary water-in-oil emulsion and pH of feed were studied on the percentage extraction of metal ions at 20℃. The results show that it is possible to remove 78% for As(V), 98% for Cd(II), and 99% for Pb(II).
본 논문에서는 카오스에 기반을 둔 ELM(Expanding Logistic Map) 암호화 알고리즘을 개선하기 위해 CELM(Cascade Expanding Logistic Map)을 제안한다. 제안된 암호화 시스템은 3차 방정식에 기반을 둔 ELM의 차수를 증가시켜 키의 범위를 확대하고, 서로 다른 Key 값과 초기 값의 함수를 Cascade연결하여 안정성을 높일 수 있었다.
In this study, a cotton knit was dyed with elm bark extract; subsequently, the dyed fabric was measured according to the types of mordants and the preprocessing cationizers used. Additionally, antibiosis against super bacteria was examined. The results follow. First, the color of the dyed cotton knit appeared reddish and yellowish for fabrics treated with non-mordants and mordants. When preprocessing with a cationizer was conducted, the dyeing properties were the best. Second. even when mordants were not used for dyeing, color fastness after washing, sweating, and rubbing was generally good Grade 4 and 5. Color fastness after exposure to sunlight was the best Grade 4 for fabric prepared with ferrous sulfate as the mordant. Third. as for antimicrobial properties, or resistance to super bacteria, the growth of bacteria was suppressed in a meaningful way for fabrics treated with non-mordants and mordants, compared to the control group fabric. The dyeing methods with the most powerful antimicrobial effects were dyeing after preprocessing with a cationizer and preparing fabric with copper sulfate as the mordant. The results stated above show that in case of dyeing with elm bark extract, preprocessing of the cotton knit with a cationizer and dying with copper mordant displayed high levels of antimicrobial properties that were useful for resisting super bacteria. Of these the dyeing properties were the best when preprocessing with a cationizer.
물푸레나무와 느릅나무의 수피를 아세톤-물의 혼합용액으로 추출하고 hexane, chloroform, ethylacetate 및 물 분획으로 분류하여 동결건조하고 분말상으로 조제하였다. 각 분획의 분말상 추출물을 메탄올-물 및 에탄올-헥산의 혼합액을 사용하여 Sephadex LH-20 칼럼으로 크로마토그래피를 수행하였다. 물푸레나무의 수피는 소량의 ligstroside와 oleuropein 및 aesculin이나 aesculitin과 같은 다량의 쿠마린 유도체를 포함하고 있었으며 느릅나무 수피 추출물의 대부분은 (+)-catechin과 (+)-catechin-7-O-xylopyranose (+)-catechin-7-O-apiofuranose와 같은 (+)-catechin의 배당체 화합물 및 (+)-catechin의 이량체인 소량의 procyanidin B-3 화합물이었으며 단리된 페놀성 화합물의 구조를 구명하기 위하여 NMR과 FAB-MS 분석을 수행하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.