• Title/Summary/Keyword: Elliptical hole

Search Result 41, Processing Time 0.029 seconds

A BEM implementation for 2D problems in plane orthotropic elasticity

  • Kadioglu, N.;Ataoglu, S.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.5
    • /
    • pp.591-615
    • /
    • 2007
  • An improvement is introduced to solve the plane problems of linear elasticity by reciprocal theorem for orthotropic materials. This method gives an integral equation with complex kernels which will be solved numerically. An artificial boundary is defined to eliminate the singularities and also an algorithm is introduced to calculate multi-valued complex functions which belonged to the kernels of the integral equation. The chosen sample problem is a plate, having a circular or elliptical hole, stretched by the forces parallel to one of the principal directions of the material. Results are compatible with the solutions given by Lekhnitskii for an infinite plane. Five different orthotropic materials are considered. Stress distributions have been calculated inside and on the boundary. There is no boundary layer effect. For comparison, some sample problems are also solved by finite element method and to check the accuracy of the presented method, two sample problems are also solved for infinite plate.

A Study of Strength Evaluation of Crankshaft Lifting Pin for Reducing Weight (대형 크랭크축 리프팅 핀의 경량화를 위한 강도평가 연구)

  • Jeon, Byung-Young;Kim, Byung-Joo;Park, Jong-Du
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.7-12
    • /
    • 2004
  • Large-sized pins are usually used to lift and handle large low speed diesel engine crankshaft. There has then been a need to reduce and optimize the weight of the traditionally used pins. Making an hole by cutting the inside of the pin out was investigated in view of static and fracture strength. To compensate the stress increase caused by the introduction of the inner hole, the groove in the circumferential direction pre-existing on the pin is to be removed. Finite element analysis was carried out for both the original model and weight reduced model. Stress intensity factors for semi-elliptical defects assumed on the pin for the original model and weight reduced model was calculated using the ASME method and compared with the fracture toughness test result of the pin material. The diameter of the cutting hole for the revised model was determined based on the analysis results.

  • PDF

Effect of Orifice Geometry on Flow Characteristics of Liquid Jet from Single Hole Nozzle (오리피스 형상에 따른 단공노즐 액체제트의 유동특성)

  • Song, Yoonho;Hwang, Donghyun;Ahn, Kyubok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.19-28
    • /
    • 2017
  • Effects of cavitation and hydraulic flip in circular and elliptical nozzles on the flow characteristics have been studied. Spray tests were conducted using injectors with different ratios of an orifice length(L) to a diameter(d) and of a major axis diameter(a) to a minor axis diameter(b). With the increment of an injection pressure drop, discharge coefficients slightly decreased in cavitation flows, and those suddenly dropped and were almost constant in hydraulic flip flows. For elliptical nozzles with L/b > 8 and L/a < 8, discharge coefficients and flow patterns showed different results from those in previous circular nozzles. When a flow in the elliptical nozzle was under steady condition, as the liquid column went downstream from the nozzle, its spray angle a little decreased in the plane of a major axis and increased in the plane of a minor axis.

KVN Observation on Radio-selected AGNs hosted by Elliptical Galaxies

  • Park, Song-Youn;Yi, Suk-Young K.;Sohn, Bong-Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.61.1-61.1
    • /
    • 2011
  • We have performed simultaneous observations at 22GHz and 43GHz on AGNs hosted by elliptical galaxies using KVN radio telescope. We have constructed the sample, based on two major surveys in radio and optical band, i.e. Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) and Sloan Digital Sky Survey (SDSS) DR7, respectively. We restricted the redshift range 0.01 < z < 0.06 and the absolute magnitude Mr < -19.4 in order to satisfy volume limited sample. We also checked clear detection of four distinctive emission lines ([NII], [OIII], $H{\alpha}$, $H{\beta}$) so as to utilize on BPT diagram, distinguishing AGNs from star-forming galaxies. Elliptical galaxies have been selected by visual inspection making use of SDSS optical images. Then, we cross-matched the elliptical galaxies with FIRST detections. About 35% of the galaxies have been detected throughout KVN observations. We derive spectral index, applying the flux of different radio frequencies from FIRST (1.4GHz) and KVN (22GHz) and classify into steep, flat or inverted spectrum. We have found that most of the detected galaxies have flat spectrum while the rest of them have steep spectrum. This implies that a number of detected galaxies might have compact structure associated with the central region of the galaxies. The relation between black hole mass and radio luminosity has shown relatively tighter correlation in high frequency than in low frequency, which confirms that high frequency in radio band is appropriate to study the center of the galaxies.

  • PDF

Finite Elements Adding and Removing Method for Two-Dimensional Shape Optimal Design

  • Lim, Kyoung-Ho;John W. Bull;Kim, Hyun-Kang
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.413-421
    • /
    • 2001
  • A simple procedure to add and remove material simultaneously along the boundary is developed to optimize the shape of a two dimensional elastic problems and to minimize the maximum von Mises stress. The results for the two dimensional infinite plate with a hole, are close to the theoretical results of an elliptical boundary and the stress concentration is reduced by half for the fillet problem. The proposed shape optimization method, when compared with existing derivative based shape optimization methods has many features such as simplicity, applicability, flexibility, computational efficiency and a much better control on stresses on the design boundary.

  • PDF

Linear Low Density Polyethylene (LLDPE)/Zeolite Microporous Composite Film

  • Jagannath Biswas;Kim, Hyun;Soonja Choe;Patit P. Kundu;Park, Young-Hoon;Lee, Dai-Soo
    • Macromolecular Research
    • /
    • v.11 no.5
    • /
    • pp.357-367
    • /
    • 2003
  • The linear low density polyethylene (LLDPE)/zeolite composite using novel inorganic filler, zeolite, is prepared by a conventional compounding procedure using a twin-screw extruder. The observed scanning electron microscopic (SEM) morphology shows a good dispersion and adhesion of zeolite in the LLDPE matrix. The mechanical properties in terms of the Young's modulus, the yield stress, the impact strength, and the elongation at break were enhanced with a successive increment of zeolite content up to 40 wt%. The X-ray diffraction measurement is of supportive for the improved mechanical properties and the complex melt viscosity is as well. Upon applying a certain level of strain on the composites, the dewetting, the air hole formation and its growth are characterized. The dewetting originates around the filler particles at low strain and induces elliptical micropores upon further stretching. The microporosity such as the aspect ratio, the number and the total area of the air holes is also characterized. Thus, the composites loaded 40 % zeolite and 300 % elongation may be applicable for breathable microporous films with improved modulus, impact and yield stress, elongation at break, microporosity and air hole properties.

A Fundamental Study on the Fracture Mechanism of Steel Plates under Completely Alternating Load (완전교번하중하(完全交番荷重下)에서의 강판(鋼板)의 파괴기구(破壞機構)에 관한 기차적(基磋的) 연구(研究))

  • Chang, Dong Il;Chung, Yeong Wha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.3
    • /
    • pp.1-13
    • /
    • 1982
  • Transition process of plastic region. displacements, stresses and strains ahead the flaw tips were analysed by the finite element method on the steel plate with the circular hole and the one with the elliptical hole under completely alternating load (repetition of tensile loading, unloading and compressive loading). As the results, the followings were obtained. Transition process of elastic failure (yielding) region was estimated. From this the tendency was confirmed that the fracture would be initiated from ahead the flaw tip, and propagated along the $45^{\circ}$ direction. The fundamental data available in estimating the stress intensity factor that was considered as the core in analysing the fracture mechanism of steel plates were obtained. It was indicated that when unloading after tension the effect of compressive loading, and even the compressive reyield, was occured ahead the flaw tip. Similarly it was indicated that when unloading after compression the effect of tensile loading, and even the tensile reyield, was occured ahead the flaw tip. It was considered that these phenomena were occured because the unloading effect was constrained by the residual strains when unloading. It was considered that the fatigue phenomenon was occured ahead, the flaw tip by repetition of tensile yield, the above compressive reyield, compressive yeild and the above tensile reyield. In addition, the tendency was confirmed that the fracture ahead the flaw tip was occured as the flaw was changed from the circular hole to the elliptical hole and became to be the crack lastly.

  • PDF

Compact Elliptical Galaxies Hosting Active Galactic Nuclei in Isolated Environments

  • Rey, Soo-Chang;Oh, Kyuseok;Kim, Suk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.69.2-69.2
    • /
    • 2021
  • We present the discovery of rare active galactic nuclei (AGNs) in nearby (z<0.05) compact elliptical galaxies (cEs) located in isolated environments. Using spectroscopic data from the Sloan Digital Sky Survey (SDSS) Data Release 12, four AGNs were identified based on the optical emission-line diagnostic diagram. SDSS optical spectra of AGNs show the presence of distinct narrow-line emissions. Utilizing the black hole (BH) mass-stellar velocity dispersion scaling relation and the correlation between the narrow L([OIII])/L(Hβ) line ratio and the width of the broad Hα emission line, we estimated the BH masses of the cEs to be in the range of 7×105-8×107 solar mass. The observed surface brightness profiles of the cEs were fitted with a double Sérsic function using the Dark Energy Camera Legacy Survey r-band imaging data. Assuming the inner component as the bulge, the K-band bulge luminosity was also estimated from the corresponding Two Micron All Sky Survey images. We found that our cEs follow the observed BH mass-stellar velocity dispersion and BH mass-bulge luminosity scaling relations, albeit there was a large uncertainty in the derived BH mass of one cE. In view of the observational properties of BHs and those of the stellar populations of cEs, we discuss the proposition that cEs in isolated environments are bona fide low-mass early-type galaxies (i.e., a nature origin).

  • PDF

Atomization Characteristics of Effervescent Twin-fluid Nozzle with Different Nozzle Shapes (노즐 형상에 따른 Effervescent 이유체 노즐의 분무특성)

  • Lee, Sang Ji;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.22 no.3
    • /
    • pp.146-152
    • /
    • 2017
  • An experimental study was carried out to investigate the spray characteristics of non-circular effervescent twin-fluid nozzles. For this purpose, two types of non-circular nozzles (E1, E2) and circular nozzle (C) were used. Three types of aerorators with hole diameters of 1.2, 1.7 and 2.1 mm were used. Each aerorator has a total of 12 holes. It is defined by area ratio which is ratio of exit orifice area and aerator hole area. Experiments were carried out by controlling the amount of air flowing after fixing the flow rate of the liquid, and the nozzle internal pressure and SMD were measured, and the jet image was taken from the nozzles. The discharge coefficients of the three kinds of nozzles were compared with the used in plain orifice's equation and the Jedelsky's equation, and the Jedelsky's equation was found to be about 3 times larger. In addition, empirical formula based on ALR, which is the largest variable in Jedelsky's equation, was derived. The droplet sizes(SMD) were found to be smaller in the non-circular shape than in the circular shape, which is concluded to be caused by the difference of the discharge coefficients.

Optimal Determination of the Fabrication Parameters in Focused Ion Beam for Milling Gold Nano Hole Array (금 나노홀 어레이 제작을 위한 집속 이온빔의 공정 최적화)

  • Cho, Eun Byurl;Kwon, Hee Min;Lee, Hee Sun;Yeo, Jong-Souk
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.5
    • /
    • pp.262-269
    • /
    • 2013
  • Though focused ion beam (FIB) is one of the candidates to fabricate the nanoscale patterns, precision milling of nanoscale structures is not straightforward. Thus this poses challenges for novice FIB users. Optimal determination in FIB parameters is a crucial step to fabricate a desired nanoscale pattern. There are two main FIB parameters to consider, beam current (beam size) and dose (beam duration) for optimizing the milling condition. After fixing the dose, the proper beam current can be chosen considering both total milling time and resolution of the pattern. Then, using the chosen beam current, the metal nano hole structure can be perforated to the required depth by varying the dose. In this experiment, we found the adequate condition of $0.1nC/{\mu}m^2$ dose at 1 pA Ga ion beam current for 100 nm thickness perforation. With this condition, we perforated the periodic square array of elliptical nano holes.