• Title/Summary/Keyword: Elliptic Jet

Search Result 23, Processing Time 0.02 seconds

NUMERICAL SIMULATION OF SHOCK FOCUSING PHENOMENON BY CARTESIAN EMBEDDED BOUNDARY METHOD AND WAVE PROPAGATION ALGORITHM (내장 카티지안 경계법과 파동전파 알고리즘을 사용한 충격파 집속 현상의 수치적 시뮬레이션)

  • Jung, Y.G.;Chang, K.S.
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.14-20
    • /
    • 2010
  • Shock-focusing concave reflectors can have parabolic, circular or elliptic cross-sections. They produce effectively a very high pressure at the focusing point. In the past, many optical images have been obtained on shock focusing via experiments. Measurement of field variables is, however, difficult in the experiment. Using the wave propagation algorithm and the Cartesian embedded boundary method, we have successfully obtained numerical Schlieren images that appear very much like the experimental results. In addition, we obtained the detailed field variables such as pressure, velocity, density and vorticity in the unsteady domain. The present numerical results have made it possible to understand the shock focusing phenomenon in more detail than before.

Numerical Analysis of Arc-Heated Flow through a solution of Electric Field (전기장 해석을 통한 아크/열 유동 해석)

  • Kim Chin-Su;Oh Se-Jong;Choi Jeong-Yeol
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.72-77
    • /
    • 2000
  • This paper presents the results of the application of a computational fluid dynamics algorithm for the simulation of plasma flows of arc-heated jet. The underlying physical model is based on the axisymmetric form of the conservation equations that are coupled with an arc model including Ohm heating, electromagnetic forces. The arc model given as a source term in fluid dynamic equations is determined by a solution of electric potential field governed by an elliptic partial differential equation. The governing equation of electric field is loosely coupled with fluid dynamic equations by an electric conductivity that is a function of state variables. However, the electric fields and flow fields cannot be solved In fully coupled manner, but should be solved iteratively due to the different characteristics of governing equations. With this solution approach, several applications of arc flow analysis will be presented including Arc Thruster and Circuit Breaker.

  • PDF

3-Dimensional Analysis for Film Cooling adjacent Injection Hole (분사구 인접영역에서의 막냉각에 관한 3차원 해석)

  • 이용덕;이재헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2590-2600
    • /
    • 1993
  • The present paper describes numerical predictions for the film cooling effectiveness from a row of hole at various injection ratios and injection alngles.Numerical calculations were performed to investigate film cooling effectiveness and the characteristics of flow and temperature distributions in the region near the downstream of injection hole including the region of adverse pressure gradient. The elliptic 3-dimensional governing equations with variable thermal properties were solved by SIMPLE algorithm. The results showed that the presence of adverse pressure gradient in the region near the downstream of injection hole induces large temperature gradient. At injection angle of $35^{\circ}$ the average film cooling effectiveness was increased as increased of injection ratio up to 1.0. At injection angle of $90^{\circ}$ however, the average film cooling effectiveness was decreased from injection ratio larger than 0.4.