• Title/Summary/Keyword: Elliptic Integral

Search Result 46, Processing Time 0.024 seconds

A fast scalar multiplication on elliptic curves (타원곡선에서 스칼라 곱의 고속연산)

  • 박영호;한동국;오상호;이상진;임종인;주학수
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.2
    • /
    • pp.3-10
    • /
    • 2002
  • For efficient implementation of scalar multiplication in Kobliz elliptic curves, Frobenius endomorphism is useful. Instead of binary expansion of scalar, using Frobenius expansion of scalar we can speed up scalar multiplication and so fast scalar multiplication is closely related to the expansion length of integral multipliers. In this paper we propose a new idea to reduce the length of Frobenius expansion of integral multipliers of scalar multiplication, which makes speed up scalar multiplication. By using the element whose norm is equal to a prime instead of that whose norm is equal to the order of a given elliptic curve we optimize the length of the Frobenius expansion. It can reduce more the length of the Frobenius expansion than that of Solinas, Smart.

REMOVAL OF HYPERSINGULARITY IN A DIRECT BEM FORMULATION

  • Lee, BongJu
    • Korean Journal of Mathematics
    • /
    • v.18 no.4
    • /
    • pp.425-440
    • /
    • 2010
  • Using Green's theorem, elliptic boundary value problems can be converted to boundary integral equations. A numerical methods for boundary integral equations are boundary elementary method(BEM). BEM has advantages over finite element method(FEM) whenever the fundamental solutions are known. Helmholtz type equations arise naturally in many physical applications. In a boundary integral formulation for the exterior Neumann there occurs a hypersingular operator which exhibits a strong singularity like $\frac{1}{|x-y|^3}$ and hence is not an integrable function. In this paper we are going to remove this hypersingularity by reducing the regularity of test functions.

Numerical simulations of elliptic particle suspensions in sliding bi-periodic frames

  • Chung, Hee-Taeg;Kang, Shin-Hyun;Hwang, Wook-Ryol
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.4
    • /
    • pp.171-180
    • /
    • 2005
  • We present numerical results for inertialess elliptic particle suspensions in a Newtonian fluid subject to simple shear flow, using the sliding bi-periodic frame concept of Hwang et al. (2004) such that a particulate system with a small number of particles could represent a suspension system containing a large number of particles. We report the motion and configurational change of elliptic particles in simple shear flow and discuss the inter-relationship with the bulk shear stress behaviors through several example problems of a single, two-interacting and ten particle problems in a sliding bi-periodic frame. The main objective is to check the feasibility of the direct simulation method for understanding the relationship between the microstructural evolution and the bulk material behaviors.

A NOTE ON SCATTERING OPERATOR SYMBOLS FOR ELLIPTIC WAVE PROPAGATION

  • Kim, Jeong-Hoon
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.2
    • /
    • pp.349-361
    • /
    • 2002
  • The ill-posed elliptic wave propagation problems can be transformed into well-posed initial value problems of the reflection and transmission operators characterizing the material structure of the given model by the combination of wave field splitting and invariant imbedding methods. In general, the derived scattering operator equations are of first-order in range, nonlinear, nonlocal, and stiff and oscillatory with a subtle fixed and movable singularity structure. The phase space and path integral analysis reveals that construction and reconstruction algorithms depend crucially on a detailed symbol analysis of the scattering operators. Some information about the singularity structure of the scattering operator symbols is presented and analyzed in the transversely homogeneous limit.

Large deflection behavior of a flexible circular cantilever arc device subjected to inward or outward polar force

  • Al-Sadder, Samir Z.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.4
    • /
    • pp.433-447
    • /
    • 2006
  • The problem of very large deflection of a circular cantilever arc device subjected to inward or outward polar force is studied. An exact elliptic integral solution is derived for the two cases and the results are checked using large displacement finite element analysis via the ANSYS package by performing a new novel modeling simulation technique for this problem. Excellent agreements have been obtained between the exact analytical solution and the numerical approach. From this study, a design chart for engineers is developed to predict the required value for the inward polar force for the device to switch on for a given angle forming the circular arc (${\theta}_o$). This study has several interesting applications in mechanical engineering, integrated circuit technology, nanotechnology and especially in microelectromechanical systems (MEMs) such as a MEM circular device switch subjected to attractive or repulsive magnetic forces due to the attachments of two magnetic poles at the fixed and at the free end of the circular cantilever arc switch device.

An Analysis of Electromagnetic Wave Scattering for the Elliptic-Multi Layer Dielectric Cylinders (다층타원 유전체주의 전자파 산란 해석)

  • 박동희;김정기
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.2 no.3
    • /
    • pp.26-31
    • /
    • 1991
  • The scattering property of TMz illuminated a elliptic dielectric cylinders with arbitrary cross section are analyzed by the boundary element techniques. The boundary element equations are for- mulated via Maxwell's equations, weighted residual of Green's theorem, and the boundary conditions. The unknown surface fields on the boundaries are then calculated by the boundary element integral equations. Once the surface fields are found, the scattered fields in far-zone and scattering widths (SW) are readily determined. To show the validity and usefulness of this formulation, computations are compared with those obtained using analytical method and one layer circular cylinder. As exten- sion to arbitrary cross-sectioned cylinders, plane wave scattering from a elliptic dielectric cylinders are numerically analyzed. A general computer program has been developed using the quadratic ele- ments(Higher order borndary elements) and the Gaussian quadrature.

  • PDF

A new decomposition algorithm of integer for fast scalar multiplication on certain elliptic curves (타원곡선상의 고속 곱셈연산을 위한 새로운 분해 알고리즘)

  • 박영호;김용호;임종인;김창한;김용태
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.6
    • /
    • pp.105-113
    • /
    • 2001
  • Recently, Gallant, Lambert arid Vanstone introduced a method for speeding up the scalar multiplication on a family of elliptic curves over prime fields that have efficiently-computable endomorphisms. It really depends on decomposing an integral scalar in terms of an integer eigenvalue of the characteristic polynomial of such an endomorphism. In this paper, by using an element in the endomorphism ring of such an elliptic curve, we present an alternate method for decomposing a scalar. The proposed algorithm is more efficient than that of Gallant\`s and an upper bound on the lengths of the components is explicitly given.

EXISTENCE AND NONEXISTENCE OF SOLUTIONS FOR CERTAIN SECOND-ORDER ODES

  • JU, HYEONG-KWAN
    • Honam Mathematical Journal
    • /
    • v.24 no.1
    • /
    • pp.25-33
    • /
    • 2002
  • In this paper we have shown conditions of R for the existence of the solution to the problem of the type $-u''=ue^{{\varepsilon}u}$ on the interval (0, R) with boundary and other conditions as in $(1-{\varepsilon})-(4)$ for various ${\varepsilon}$.

  • PDF