• Title/Summary/Keyword: Ellipses

Search Result 93, Processing Time 0.018 seconds

Numerical Simulation of the Formation of Oxygen Deficient Water-masses in Jinhae Bay (진해만의 빈산소 수괴 형성에 관한 수치실험)

  • CHOI Woo-Jeung;PARK Chung-Kill;LEE Suk-Mo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.4
    • /
    • pp.413-433
    • /
    • 1994
  • Jinhae Bay once was a productive area of fisheries. It is, however, now notorious for its red tides; and oxygen deficient water-masses extensively develop at present in summer. Therefore the shellfish production of the bay has been decreasing and mass mortality often occurs. Under these circumstances, the three-dimensional numerical hydrodynamic and the material cycle models, which were developed by the Institute for Resources and Environment of Japan, were applied to analyze the processes affecting the oxygen depletion and also to evaluate the environment capacity for the reception of pollutant loads without dissolved oxygen depletion. In field surveys, oxygen deficient water-masses were formed with concentrations of below 2.0mg/l at the bottom layer in Masan Bay and the western part of Jinhae Bay during the summer. Current directions, computed by the $M_2$ constituent, were mainly toward the western part of Jinhae Bay during flood flows and in opposite directions during ebb flows. Tidal currents velocities during the ebb tide were stronger than that of the flood tide. The comparision between the simulated and observed tidal ellipses showed fairly good agreement. The residual currents, which were obtained by averaging the simulated tidal currents over 1 tidal cycle, showed the presence of counterclockwise eddies in the central part of Jinhae Bay. Density driven currents were generated southward at surface and northward at the bottom in Masan Bay and Jindong Bay, where the fresh water of rivers entered. The material cycle model was calibrated with the data surveyed in the field of the study area from June to July, 1992. The calibrated results are in fairly good agreement with measured values within relative error of $28\%$. The simulated dissolved oxygen distributions of bottom layer were relatively high with the concentration of $6.0{\sim}8.0mg/l$ at the boundaries, but an oxygen deficient water-masses were formed within the concentration of 2.0mg/l at the inner part of Masan Bay and the western part of Jinhae Bay. The results of sensitivity analyses showed that sediment oxygen demand(SOD) was one of the most important influence on the formation of oxygen depletion. Therefore, to control the oxygen deficient water-masses and to conserve the coastal environment, it is an effective method to reduce the SOD by improving the polluted sediment. As the results of simulations, in Masan Bay, oxygen deficient water-masses recovered to 5.0mg/l when the $50\%$ reduction in input COD loads from Masan basin and $70\%$ reduction in SOD was conducted. In the western part of Jinhae Bay, oxygen deficient water-masses recovered to 5.0mg/l when the $95\%$ reduction in SOD and $90\%$ reduction in culturing ground fecal loads was conducted.

  • PDF

A Ultrastructural Study on the Cerebral Ganglion of the African Giant Snail, Achatina fulica (아프리카 왕달팽이 (Achatina fulica) 뇌신경절 (Cerebral ganglion)의 미세구조)

  • Chang, Nam-Sub
    • Applied Microscopy
    • /
    • v.29 no.3
    • /
    • pp.303-313
    • /
    • 1999
  • In this paper, five kinds of neurosecretory cells-light green (LG) cell, dark green (DG) cell, caudo-dorsal (CD) cell, blue green (BG) cell, and yellow (Y) cell- and neuropils in the cerebral ganglion of the African giant snail, Achatina fulica, were observed with an electron microscope. The following results were obtained. The LG cells are circular or ovoid in shape, and about $60{\mu}m$ in size. The nucleus and cytoplasm of the LG cell look light due to their electron-low density. Large granular chromatins are evenly developed in the karyolymph, where round nucleoli are also found. In the cytoplasm, electron -high dense round granules of $0.4{\mu}m$ in average size are crowded. The DG cells are ovoid in shape, and $50\sim20{\mu}m$ in size. These relatively electron-high dense cells were rarely found. In their cytoplasm, cell organelles such as rough endoplasmic reticulum and mitochondria are found together with electron -high dense round granules of $0.2{\mu}m$ in average size. The CD cells are ellipsoidal cells densely distributed in caudo-dorsal parts of the cerebral ganglion. They have large nuclei compared with the cytoplasm. The developed granular heterochromatins are observed in the karyolymph, and lots of small round granules of $0.12{\mu}m$ in average size in the cytoplasm. The 3G cells, rarely found around endoneurium of the cerebral ganglion, take the shapes of long ellipses. They look dark due to their electron -high density. In the cytoplasm, small round granules of $0.1{\mu}m$ in average size are found. The Y cells are the smallest among the neurosecretory cells($9\times6.6{\mu}m$ in size). They are found mostly between the medio-dorsal parts and the caudo-dorsal parts of the cerebral ganglion. In the cytoplasm, tiny round granules of $0.08{\mu}m$ in average size form a group. The neuropils are found in the middle of the cerebral ganglion. In the axon ending, round granules with electron -high density ($0.07\sim0.03{\mu}m$ in diameter) and lucent vesicles ($0.03{\mu}m$ in diameter) are found in large quantities. They are excreted in the state of exocytosome formed by the invagination of the limiting membrane of the axon ending.

  • PDF

Accuracy of HF radar-derived surface current data in the coastal waters off the Keum River estuary (금강하구 연안역에서 HF radar로 측정한 유속의 정확도)

  • Lee, S.H.;Moon, H.B.;Baek, H.Y.;Kim, C.S.;Son, Y.T.;Kwon, H.K.;Choi, B.J.
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.1
    • /
    • pp.42-55
    • /
    • 2008
  • To evaluate the accuracy of currents measured by HF radar in the coastal sea off Keum River estuary, we compared the facing radial vectors of two HF radars, and HF radar-derived currents with in-situ measurement currents. Principal component analysis was used to extract regression line and RMS deviation in the comparison. When two facing radar's radial vectors at the mid-point of baseline are compared, RMS deviation is 4.4 cm/s in winter and 5.4 cm/s in summer. When GDOP(Geometric Dilution of Precision) effect is corrected from the RMS deviations that is analyzed from the comparison between HF radar-derived and current-metermeasured currents, the error of velocity combined by HF radar-derived current is less than 5.1 cm/s in the stations having moderate GDOP values. These two results obtained from different method suggest that the lower limit of HF radar-derived current's accuracy is 5.4 cm/s in our study area. As mentioned in previous researches, RMS deviations become large in the stations located near the islands and increase as a function of mean distance from the radar site due to decrease of signal-to-noise level and the intersect angle of radial vectors. We found that an uncertain error bound of HF radar-derived current can be produced from the separation process of RMS deviations using GDOP value if GDOP value for each component is very close and RMS deviations obtained from current component comparison are also close. When the current measured in the stations having moderate GDOP values is separated into tidal and subtidal current, characteristics of tidal current ellipses analyzed from HF radar-derived current show a good agreement with those from current-meter-measured current, and time variation of subtidal current showed a response reflecting physical process driven by wind and density field.