• Title/Summary/Keyword: Elimination Strategy

검색결과 104건 처리시간 0.123초

SRM 구동을 위한 향상된 C-Dump 컨버터 (An Improved C-Dump Converter for Switched Reluctance Motors)

  • 김종철;이동윤;허진;현동석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.90-92
    • /
    • 2002
  • This paper presents an improved C-Dump converter system for switched reluctance motors(SRM). The proposed C-Dump converter derived from the conventional converter for SRM. The proposed converter could overcome the limitation of the conventional C-Dump converter, and could reduce the whole cost of the SRM system since the voltage stress of the dump switch $T_d$ is reduced to $V_{dc}$ when compared with $2V_{dc}$ for the conventional C-Dump converter. The attractive features of the proposed converters are; high-efficient and low-cost, elimination of dump inductor, simple control strategy, smaller size arid light weight. The proposed converter is able to be fast magnetization by $2V_{dc}$, which is sum of the input voltage and charging voltage of the dump capacitor. Also, this topology has many advantages such as freewheeling of phase winding without complex control, reduction of current ripple, reduction of torque ripple, and reduction of switching frequency. Simulation demonstrates the good performance of the converter.

  • PDF

한우 송아지의 소바이러스성 설사바이러스 지속감염률 조사 (Prevalence for persistent infection with bovine viral diarrhea virus in Korean native calves)

  • 배유찬;김하영;박중원;윤순식;우계형;이오수;강문일
    • 대한수의학회지
    • /
    • 제47권2호
    • /
    • pp.163-167
    • /
    • 2007
  • Bovine viral diarrhea (BVD) is very important disease in cattle industry with a worldwide distribution. Detection and elimination of persistently infected calves with bovine viral diarrhea virus (BVDV) was valuable strategy for BVD eradication because those calves were main source for transmission. We surveyed persistent infection with BVDV by reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) using whole blood and skin. Five hundred thirty nine Korean native calves were tested. Four calves (0.7%) were positive for BVDV antigen for both tests. Those calves remained positive for follow-up by RT-PCR and IHC. Therefore they were identified as persistently infected with BVDV. We confirmed that immunohistochemistry using skin biopsy samples was very useful tool to detect persistently infected calves with BVDV. As far as we know, this would be first report on persistent infection with BVDV in Korea.

A Decentralized Optimal Load Current Sharing Method for Power Line Loss Minimization in MT-HVDC Systems

  • Liu, Yiqi;Song, Wenlong;Li, Ningning;Bai, Linquan;Ji, Yanchao
    • Journal of Power Electronics
    • /
    • 제16권6호
    • /
    • pp.2315-2326
    • /
    • 2016
  • This paper discusses the elimination of DC voltage deviation and the enhancement of load current sharing accuracy in multi-terminal high voltage direct current (MT-HVDC) systems. In order to minimize the power line losses in different parallel network topologies and to insure the stable operation of systems, a decentralized control method based on a modified droop control is presented in this paper. Averaging the DC output voltage and averaging the output current of two neighboring converters are employed to reduce the congestion of the communication network in a control system, and the decentralized control method is implemented. By minimizing the power loss of the cable, the optimal load current sharing proportion is derived in order to achieve rational current sharing among different converters. The validity of the proposed method using a low bandwidth communication (LBC) network for different topologies is verified. The influence of the parameters of the power cable on the control system stability is analyzed in detail. Finally, transient response simulations and experiments are performed to demonstrate the feasibility of the proposed control strategy for a MT-HVDC system.

Training HMM Structure and Parameters with Genetic Algorithm and Harmony Search Algorithm

  • Ko, Kwang-Eun;Park, Seung-Min;Park, Jun-Heong;Sim, Kwee-Bo
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권1호
    • /
    • pp.109-114
    • /
    • 2012
  • In this paper, we utilize training strategy of hidden Markov model (HMM) to use in versatile issues such as classification of time-series sequential data such as electric transient disturbance problem in power system. For this, an automatic means of optimizing HMMs would be highly desirable, but it raises important issues: model interpretation and complexity control. With this in mind, we explore the possibility of using genetic algorithm (GA) and harmony search (HS) algorithm for optimizing the HMM. GA is flexible to allow incorporating other methods, such as Baum-Welch, within their cycle. Furthermore, operators that alter the structure of HMMs can be designed to simple structures. HS algorithm with parameter-setting free technique is proper for optimizing the parameters of HMM. HS algorithm is flexible so as to allow the elimination of requiring tedious parameter assigning efforts. In this paper, a sequential data analysis simulation is illustrated, and the optimized-HMMs are evaluated. The optimized HMM was capable of classifying a sequential data set for testing compared with the normal HMM.

RBD와 FTA의 논리구조와 신뢰성 중요도의 고찰에 의한 시스템 비시간가동률 개선방안 (Improvement Strategy of System Unavailability by Review of Logical Structure and Reliability Importance of Reliability Block Diagram (RED) and Fault Tree Analysis (FTA))

  • 최성운
    • 대한안전경영과학회지
    • /
    • 제13권3호
    • /
    • pp.45-53
    • /
    • 2011
  • The research proposes seven elimination rules of redundant gates and blocks in Fault Tree Analysis (FTA) and Reliability Block Diagram (RBD). The computational complexity of cut sets and path sets is NP-hard. In order to reduce the complexity of Minimal Cut Set (MCS) and Minimal Path Set (MPS), the paper classifies generation algorithms. Moreover, the study develops six implementation steps which reflect structural importance (SI) and reliability importance (RI) from Reliability Centered Maintenance (RCM) that a priority of using the functional logic among components is to reduce (improve) the system unavailability (or availability). The proposed steps include efficient generation of state structure function by Rare Event Enumeration (REA). Effective use of importance measures, such as SI and ill measures, is presented based on the number and the size of MCS and MPS which is generated from the reference[5] of this paper. In addition, numerical examples are presented for practitioners to obtain the comprehensive understanding of six steps that is proposed in this research.

Dual Vector Control Strategy for a Three-Stage Hybrid Cascaded Multilevel Inverter

  • Kadir, Mohamad N. Abdul;Mekhilef, Saad;Ping, Hew Wooi
    • Journal of Power Electronics
    • /
    • 제10권2호
    • /
    • pp.155-164
    • /
    • 2010
  • This paper presents a voltage control algorithm for a hybrid multilevel inverter based on a staged-perception of the inverter voltage vector diagram. The algorithm is applied to control a three-stage eighteen-level hybrid inverter, which has been designed with a maximum number of symmetrical levels. The inverter has a two-level main stage built using a conventional six-switch inverter and medium- and low- voltage three-level stages constructed using cascaded H-bridge cells. The distinctive feature of the proposed algorithm is its ability to avoid the undesirable high switching frequency for high- and medium- voltage stages despite the fact that the inverter's dc sources voltages are selected to maximize the number of levels by state redundancy elimination. The high- and medium- voltage stages switching algorithms have been developed to assure fundamental switching frequency operation of the high voltage stage and not more than few times this frequency for the medium voltage stage. The low voltage stage is controlled using a SVPWM to achieve the reference voltage vector exactly and to set the order of the dominant harmonics. The inverter has been constructed and the control algorithm has been implemented. Test results show that the proposed algorithm achieves the desired features and all of the major hypotheses have been verified.

Global Sliding Mode Control based on a Hyperbolic Tangent Function for Matrix Rectifier

  • Hu, Zhanhu;Hu, Wang;Wang, Zhiping;Mao, Yunshou;Hei, Chenyang
    • Journal of Power Electronics
    • /
    • 제17권4호
    • /
    • pp.991-1003
    • /
    • 2017
  • The conventional sliding mode control (CSMC) has a number of problems. It may cause dc output voltage ripple and it cannot guarantee the robustness of the whole system for a matrix rectifier (MR). Furthermore, the existence of a filter can decrease the input power factor (IPF). Therefore, a novel global sliding mode control (GSMC) based on a hyperbolic tangent function with IPF compensation for MRs is proposed in this paper. Firstly, due to the reachability and existence of the sliding mode, the condition of the matrix rectifier's robustness and chattering elimination is derived. Secondly, a global switching function is designed and the determination of the transient operation status is given. Then a SMC compensation strategy based on a DQ transformation model is applied to compensate the decreasing IPF. Finally, simulations and experiments are carried out to verify the correctness and effectiveness of the control algorithm. The obtained results show that compared with CSMC, applying the proposed GSMC based on a hyperbolic tangent function for matrix rectifiers can achieve a ripple-free output voltage with a unity IPF. In addition, the rectifier has an excellent robust performance at all times.

비대칭 외판원 문제를 위한 새로운 분지기법 (New Branching Criteria for the Asymmetric Traveling Salesman Problem)

  • 지영근;강맹규
    • 산업경영시스템학회지
    • /
    • 제19권39호
    • /
    • pp.9-18
    • /
    • 1996
  • Many algorithms have been developed for optimizing the asymmectric traveling salesman problem known as a representative NP-Complete problem. The most efficient ones of them are branch and bound algorithms based on the subtour elimination approach. To increase efficiency of the branch and bound algorithm. number of decision nodes should be decreased. For this the minimum bound that is more close at the optimal solution should be found or an effective bounding strategy should be used. If the optimal solution has been known, we may apply it usefully to branching. Because a good feasible solution should be found as soon as possible and have similar features of the optimal solution. By the way, the upper bound solution in branch and bound algorithm is most close at the optimal solution. Therefore, the upper bound solution can be used instead of the optimal solution and information of which can be applied to new branching criteria. As mentioned above, this paper will propose an effective branching rule using the information of the upper bound solution in the branch and bound algorithm. And superiority of the new branching rule will be shown by comparing with Bellmore-Malone's one and carpaneto-Toth's one that were already proposed.

  • PDF

Hybrid PWM Modulation Technology Applied to Three-Level Topology-Based PMSMs

  • Chen, Yuanxi;Guo, Xinhua;Xue, Jiangyu;Chen, Yifeng
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.146-157
    • /
    • 2019
  • The inverter is an essential part of permanent magnet synchronous motor (PMSM) drive systems. The performance of an inverter is greatly influenced by its modulation strategy. Using a proper management of modulation strategies can guarantee high performance from a PMSM under various speed conditions. Switching between modulations is a pivotal technique that determines the performance of a PMSM. Most works on hybrid methods focus on two-level induction motors drive systems. In this paper, in order to improve the performance of PMSMs under various speed conditions, a hybrid method of a pulse width modulation (PWM) control scheme based on a neutral-point-clamped (NPC) three level topology was proposed. This hybrid PWM modulation comprised space vector PWM (SVPWM) and selective harmonic elimination PWM (SHEPWM). Under low speed conditions, the SVPWM is employed to cause the PMSM to start smoothly, and to obtain a rapid response from the control system. Under high speed conditions, the SHEPWM is employed to reduce the switching frequency and to eliminate particular current harmonics. Moreover, the harmonic characteristics of different modulations are analyzed to obtain a smooth transition between the SHEPWM and the SVPWM. Experimental and simulation results indicated the effectiveness of the proposed control method.

진화연산을 이용한 동적 귀환 신경망의 구조 저차원화 (Structure Pruning of Dynamic Recurrent Neural Networks Based on Evolutionary Computations)

  • 김대준;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제7권4호
    • /
    • pp.65-73
    • /
    • 1997
  • 본 논문에서는 진화연산을 이용하여 동적 귀환 신경망의 구조를 저차원화하는 방법을 제안한다. 일반적으로 진화연산을 개체군을 이용한 탐색 방법으로서 신경회로망의 여러 가지 다른 성질을 동시에 최적화할 필요가 있을 때 유용한 방법이다. 본 연구에서는 동적 귀환 신경망의 구조를 조차원화하기 위하여 진화 프로그래밍으로 신경망의 구조를 탐색하고, 진화전략으로 신경망의 연결강도를 학습시킴으로서 전체적인 구조를 저차원화하였다.신경망의 중간층 노드의 추가/삭제는 돌연변이 확률에 의하여 결정한다. 노드를 삭제할 경우에는 입력 연결강도의 총합이 가장 작은 노드를 삭제하고, 노드를 추가할 경우에는 미리 지정한 확률함스에 따라 노드를 추가한다. 그리고 추가된 노드와 다른 노드와의 연결방법은 서로 영향을 미칠 수 있는 모든 연결강도 중에서 확률적으로 선택하여 연결하였다. 마지막으로 제안한 저차원화 동적 귀환 신경망이 완전 연결된 신경망보다 더 좋은 성능을 얻을 수 있음을 예제로서 본 논문에서는 도립진자의 안정화 및 제어와 로봇 매니퓰레이터의 비주얼 서보잉에 적용하여 컴퓨터 시뮬레이션을 통하여 그 유효성을 확인한다.

  • PDF