• Title/Summary/Keyword: Eleven vessel occlusion Ischemia model

Search Result 1, Processing Time 0.016 seconds

Neuroprotective Effects by Nimodipine Treatment in the Experimental Global Ischemic Rat Model: Real Time Estimation of Glutamate

  • Choi, Seok-Keun;Lee, Gi-Ja;Choi, Sam-Jin;Kim, Youn-Jung;Park, Hun-Kuk;Park, Bong-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • v.49 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Objective: Glutamate is a key excitatory neurotransmitter in the brain, and its excessive release plays a key role in the development of neuronal injury. In order to define the effect of nimodipine on glutamate release, we monitored extracellular glutamate release in real-time in a global ischemia rat model with eleven vessel occlusion. Methods: Twelve rats were randomly divided into two groups: the ischemia group and the nimodipine treatment group. The changes of extracellular glutamate level were measured using microdialysis amperometric biosensor, in coincident with cerebral blood flow (CBF) and electroencephalogram. Nimodipine (0.025 ${\mu}g$/100 gm/min) was infused into lateral to the CBF probe, during the ischemic period. Also, we performed Nissl staining method to assess the neuroprotective effect of nimodipine. Results: During the ischemic period, the mean maximum change in glutamate concentration was $133.22{\pm}2.57\;{\mu}M$ in the ischemia group and $75.42{\pm}4.22\;{\mu}M$ (p<0.001) in the group treated with nimodipine. The total amount of glutamate released was significantly different (P<0.001) between groups during the ischemic period. The %cell viability in hippocampus was $47.50{\pm}5.64$ (p<0.005) in ischemia group, compared with sham group. But, the %cell viability in nimodipine treatment group was $95.46{\pm}6.60$ in hippocampus (p<0.005). Conclusion: From the real-time monitoring and Nissl staining results, we suggest that the nimodipine treatment is responsible for the protection of the neuronal cell death through the suppression of extracellular glutamate release in the 11-VO global ischemia model of rat.