• Title/Summary/Keyword: Elevation estimation

Search Result 282, Processing Time 0.034 seconds

A Spatial Interpolation Model for Daily Minimum Temperature over Mountainous Regions (산악지대의 일 최저기온 공간내삽모형)

  • Yun Jin-Il;Choi Jae-Yeon;Yoon Young-Kwan;Chung Uran
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.2 no.4
    • /
    • pp.175-182
    • /
    • 2000
  • Spatial interpolation of daily temperature forecasts and observations issued by public weather services is frequently required to make them applicable to agricultural activities and modeling tasks. In contrast to the long term averages like monthly normals, terrain effects are not considered in most spatial interpolations for short term temperatures. This may cause erroneous results in mountainous regions where the observation network hardly covers full features of the complicated terrain. We developed a spatial interpolation model for daily minimum temperature which combines inverse distance squared weighting and elevation difference correction. This model uses a time dependent function for 'mountain slope lapse rate', which can be derived from regression analyses of the station observations with respect to the geographical and topographical features of the surroundings including the station elevation. We applied this model to interpolation of daily minimum temperature over the mountainous Korean Peninsula using 63 standard weather station data. For the first step, a primitive temperature surface was interpolated by inverse distance squared weighting of the 63 point data. Next, a virtual elevation surface was reconstructed by spatially interpolating the 63 station elevation data and subtracted from the elevation surface of a digital elevation model with 1 km grid spacing to obtain the elevation difference at each grid cell. Final estimates of daily minimum temperature at all the grid cells were obtained by applying the calculated daily lapse rate to the elevation difference and adjusting the inverse distance weighted estimates. Independent, measured data sets from 267 automated weather station locations were used to calculate the estimation errors on 12 dates, randomly selected one for each month in 1999. Analysis of 3 terms of estimation errors (mean error, mean absolute error, and root mean squared error) indicates a substantial improvement over the inverse distance squared weighting.

  • PDF

Hybrid navigation parameter estimation from aerial image sequence (항공영상을 이용한 하이브리드 영상 항법 변수 추출)

  • 심동규;정상용;이도형;박래홍;김린철;이상욱
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.2
    • /
    • pp.146-156
    • /
    • 1998
  • Thispapr proposes hybrid navigation parameter estimation using sequential aerial images. The proposed navigation parameter estimation system is composed of two parts: relative position estimation and absolute position estimation. the relative position estimation recursively computes the current velocity and absolute position estimation. The relative position estimation recursively computes the current velocity and position of an aircraft by accumulating navigation parameters extracted from two succesive aerial images. Simple accumulation of parameter values decreases reliability of the extracted parameters as an aircraft goes on navigating. therefore absolute position estimation is required to compensate for position error generated in the relative position step. The absolute position estimation algorithm combining image matching and digital elevation model(DEM) matching is presented. Computer simulation with real aerial image sequences shows the efficiency of the proposed hybrial algorithm.

  • PDF

A New Look at the Statistical Method for Remote Sensing of Daily Maximum Air Temperature (위성자료를 이용한 일최고온도 산출의 통계적 접근에 관한 고찰)

  • 변민정;한경수;김영섭
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.2
    • /
    • pp.65-76
    • /
    • 2004
  • This study aims to estimate daily maximum air temperature estimated using satellite-derived surface temperature and Elevation Derivative Database (EDD). The analysis is focused on the establishment of a semi-empirical estimation technique of daily maximum air temperature through the multiple regression analysis. This tests the contribution of EDD in the air temperature estimation when it is added into regression model as an independent variable. The better correlation is shown with the EDD data as compared with the correlation without this data set. In order to provide a progressive estimation technique, we propose and compare three approaches: 1) seasonal estimation non-considering landcover, 2) seasonal estimation considering landcover, and 3) estimation according to landcover type and non-considering season. The last method shows the best fit with the root-mean-square error between 0.56$^{\circ}C$ and 3.14$^{\circ}C$. A cross-validation procedure is performed for third method to valid the estimated values for two major landcover types (cropland and forest). For both landcover types, the validation results show reasonable agreement with estimation results. Therefore it is considered that the estimation technique proposed may be applicable to most parts of South Korea.

Vegetation Height and Age Estimation using Shuttle Radar Topography Mission and National Elevation Datasets (SRTM과 NED를 이용한 식생수고 및 수령 추정)

  • Kim Jin-Woo;Heo Joon;Sohn Hong-Gyoo
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.127-130
    • /
    • 2006
  • SRTM 데이터와 USGS의 NED (National Elevation Datasets) 데이터를 사용하였으며 두 데이터를 차분함으로써 식생수고도(vegetation height map)를 얻었다. 또한 차분값과 shape 파일에 포함된 식수년도의 비교를 통해 상관관계여부를 판단하고자 했다. 회귀분석을 통해 차분데이터와 식수년도 사이의 큰 상관관계가 존재함을 확인할 수 있었으며 결국 수령추정과 수령정보의 맵핑이 가능함을 보였다. 추가적으로 지역별 지형특성, 숲의 균일도 등에 의해 선형성이 영향을 받는지 관찰하였다.

  • PDF

Estimation of Virtual Flooding Area using Elevation Buffering (하도 buffering 기법을 이용한 가상 홍수범람지역 산정)

  • Yi, Yong-Kon;Koh, Deuk-Koo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.771-773
    • /
    • 2007
  • 미국의 텍사스 A&M 대학의 Damon Holzer교수가 개발한 Elevation buffbyrise 프로그램을 이용하여 여주대교부근의 가상홍수범람지역을 산정하였다. 하도 buffering기법을 이용하여 얻어진 가상홍수범람지역은 제방의 홍수범람제어 기능과 물의 흐름특성을 고려하기 어렵기 때문에 홍수범람지역이 과도하게 산정되었을 것으로 판단되지만 단시간에 홍수범람피해지역을 추정할 수 있으므로 침수예상지역에 대한 주민대피계획을 수립하고 대처할 수 있을 것으로 판단된다.

  • PDF

Vegetation Height and Age Estimation using Shuttle Radar Topography Mission and National Elevation Datasets (SRTM과 NED를 활8한 산림수고추정 및 수령 추정)

  • Kim Jin-Woo;Heo Joon;Sohn Hong-Gyoo
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.305-309
    • /
    • 2006
  • SAR (Synthetic Aperture Radar) technology, which is not influenced by cloud cover because of using electromagnetic wave of long wavelength, has an advantage in mapping the earth. NASA, recognizing these strong points of SAR, launched SRTM (Shuttle Radar Topography klission), and acquired the topographic information of the earth. SRTM and NED (National Elevation Data) of USGS were used for the research and vegetation height map was produced through differentiating the two data. Correlation between SRTM-NED and planting year was analyzed to see the relationship. Strong correlation was detected and it shows the feasibility of estimating timber age and eventually creating timber age map from SRTM-NED. Additional analyses were conducted to check if the linearity is influenced by regional characteristics and forest uniformity. As results, the correlation between SRTM-NED and timber age is influenced by roughness of the terrain. Overall, this paper shows that timber age estimation using SRTM and NED can be sufficiently practical.

  • PDF

Development of Regression Equation for Water Quantity Estimation in a Tidal River (감조하천에서의 저수위 유량산정 다중회귀식 개발)

  • Lee, Sang Jin;Ryoo, Kyong Sik;Lee, Bae Sung;Yoon, Jong Su
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.385-390
    • /
    • 2007
  • Reliable flow measurement for dry season is very important to set up the in-stream flow exactly and total maximum daily load control program in the basin. Especially, in the points which tidal current effects are dominant because reliability of the low measurement decrease. The reliable measuring methods are needed. In this study, we analysis the water surface elevation difference of water surface elevation. Quantity relationship to consider tidal currents in these regions. It is known that tidal current effects from Nakdong river barrage are dominant in Samrangjin measuring station. We developed multiple regression equation with water surface elevation, quantity, and difference of water surface elevation and compared these results water measured rating curve. All of these regression equation including linear regression equation and log regression equation fits better measured data them existing water surface elevation quantity line and Among three equations, the log regression equation is best to represent the measured the rating curve in Samrangjin point. The log regression equation is useful method to obtain the quantity in the regions which tidal currents are dominant.

Development of the Inter-tidal Exposure Duration Formulae Using Tidal Harmonic Constants (조화상수를 이용한 조간대 노출시간 추정공식 개발)

  • Jeong, Shin Taek;Cho, Hongyeon;Ko, Dong Hui
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.5
    • /
    • pp.319-325
    • /
    • 2012
  • A new formulae for the estimation of the exposure duration in the inter-tidal zone are developed. The exposure duration is one of the most important factors influencing the habitat distribution of the benthic organisms. The formulae can estimate the exposure duration only using the four major tidal harmonic constants available in almost coastal areas. It is easier than the existing method using the frequency analysis of the hourly tidal elevation data. The estimation results by using the formulae suggested in this study are compared with the value by using the observed tidal elevation data analysis in the west coast, Korea. The mean RMS (root-mean squared) errors ranged form 0.8 to 1.4%. It can be used to simply estimate the accurate exposure duration in the region not having the longterm hourly tidal elevation data.