• Title/Summary/Keyword: Elevated temperature condition

Search Result 214, Processing Time 0.03 seconds

Fundamental Study on Development of Sealants used for WIM Sensor Installation (WIM 센서 설치에 적합한 실런트 개발을 위한 기초적인 연구)

  • Lim, Chisoo;Kim, Du-Byung;Kim, Yongjoo;Lee, Kanghun;Lee, Jaejun
    • International Journal of Highway Engineering
    • /
    • v.19 no.2
    • /
    • pp.17-24
    • /
    • 2017
  • PURPOSES : This study aims to develop a sealant for use in the installation of Weigh-In-Motion (WIM) sensor for asphalt concrete or cement concrete pavements. METHODS : In order to investigate the properties of various sealants that were mixed with latex and carbon fiber, various test methods were adopted, such as bituminous bond strength test, softening point test, and cone penetration test. To evaluate moisture susceptibility, the BBS test was conducted under moist condition. The bond strength ratio (BSR) was calculated based on tensile strength ratio method. RESULTS : The sealant's properties significantly varied according to the amount of latex or carbon fiber. The usage of latex marginally enhanced the cone penetration test result, notwithstanding reduced asphalt content. This implies that the sealant will be proper cold temperature reason. Moreover, the addition of latex and carbon fiber evidently increased the softening point. This indicates that the tendency of the material to flow at elevated temperatures is encountered during service. With the addition of latex and carbon fiber, the moisture susceptibility measured with BSR improved marginally, while the bond strength under dry condition decreased marginally. Sealant F displays the highest bond strength and BSR under limited test conditions. CONCLUSIONS : According to the proportion of latex and carbon fiber mixed, properties of sealant, such as softening point, cone penetration, and BSR varied marginally. This indicates that the sealant has to be applied considering the environmental condition, to improve service life.

Long-term Effects on Forest Biomass under Climate Change Scenarios Using LANDIS-II - A case study on Yoengdong-gun in Chungcheongbuk-do, Korea - (산림경관천이모델(LANDIS-II)를 이용한 기후변화 시나리오에 따른 산림의 생물량 장기변화 추정 연구 -충청북도 영동군 학산면 봉소리 일대 산림을 중심으로 -)

  • Choi, Young-Eun;Choi, Jae-Yong;Kim, Whee-Moon;Kim, Seoung-Yeal;Song, Won-Kyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.5
    • /
    • pp.27-43
    • /
    • 2019
  • This study applied the LANDIS-II model to the forest vegetation of the study area in Yeongdong-gun, Korea to identify climate effects on ecosystems of forest vegetation. The main purpose of the study is to examine the long-term changes in forest aboveground biomass(AGB) under three different climate change scenarios; The baseline climate scenario is to maintain the current climate condition; the RCP 4.5 scenario is a stabilization scenario to employ of technologies and strategies for reducing greenhouse gas emissions; the RCP 8.5 scenario is increasing greenhouse gas emissions over time representative with 936ppm of $CO_2$ concentration by 2100. The vegetation survey and tree-ring analysis were conducted to work out the initial vegetation maps and data for operation of the LANDIS model. Six types of forest vegetation communities were found including Quercus mongolica - Pinus densiflora community, Quercus mongolica community, Pinus densiflora community, Quercus variabilis-Quercus acutissima community, Larix leptolepis afforestation and Pinus koraiensis afforestation. As for changes in total AGB under three climate change scenarios, it was found that RCP 4.5 scenario featured the highest rate of increase in AGB whereas RCP 8.5 scenario yielded the lowest rate of increase. These results suggest that moderately elevated temperatures and $CO_2$ concentrations helped the biomass flourish as photosynthesis and water use efficiency increased, but huge increase in temperature ($above+4.0^{\circ}C$) has resulted in the increased respiration with increasing temperature. Consequently, Species productivity(Biomass) of trees decrease as the temperature is elevated drastically. It has been confirmed that the dominant species in all scenarios was Quercus mongolica. Like the trends shown in the changes of total AGB, it revealed the biggest increase in the AGB of Quercus mongolica under the RCP 4.5 scenario. AGB of Quercus mongolica and Quercus variabilis decreased in the RCP 4.5 and RCP 8.5 scenarios after 2050 but have much higher growth rates of the AGB starting from 2050 under the baseline scenario. Under all scenarios, the AGB of coniferous species was eventually perished in 2100. In particular they were extinguished in early stages of the RCP 4.5 and RCP 8.5 scenarios. This is because of natural selection of communities by successions and the failure to adapt to climate change. The results of the study could be expected to be effectively utilized to predict changes of the forest ecosystems due to climate change and to be used as basic data for establishing strategies for adaptation climate changes and the management plans for forest vegetation restoration in ecological restoration fields.

Characteristics of the Concentration Process of Lactobacillus Cell Using a Ceramic Membrane (세라믹막을 이용한 Lactobacillus cell의 농축 공정의 특성)

  • Lee Yong Taek;Song Min-Ho
    • Membrane Journal
    • /
    • v.14 no.3
    • /
    • pp.192-200
    • /
    • 2004
  • It is an anaerobic germ that Lactobacillus cell concentrated using ceramic membrane has high stability and long lifetime as compared with polymeric membrane. The effects of operating pressure, temperature, crossflow velocity on cell harvesting have been studied. Also the variation of flux and transmembrane pressure (TMP) with increasing concentration ratio and the change of TMP at constant concentration ratio (volumetric concentration factor: VCF) regarding the optimization have been examined. It showed that the permeate flux increased gradually with the increasing of transmembrane pressure, crossflow velocity, and volumetric concentration factor. The higher initial flux was due to the reduction of viscosity at elevated temperature. However, as operating time progressed, the effect of temperature was negligible since the effect of viscosity became minor. As a result, that operate in a constant concentration ratio, decreased degree could know that become slowly although the flux decreases according as operating time progressed. The flux is a very stable in the condition of constant VCF range. The yield of Latobaciilus (PS 406) which was cultivated at $37^{\circ}C$ was concentrated about 4.9{\times}10^9$ after operation.

A Study on the Properties of Epoxy Based Powder Coating with Various Curing Agents (에폭시 분체도료의 경화제 종류에 따른 물성에 관한 연구)

  • Park, Jae-Hong;Shin, Young-Jo
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.58-65
    • /
    • 1998
  • Substituted dicyandiamide(Sub-DICY), Accelerated dicyandiamide(Acc-DICY), Trimellitic anhydride(TMA), Pyromellitic dianhydride(PMDA) and Phenolic curing agent(Ph.C.A.) are mainly used for epoxy powder coating curing agent. Various characteristics of epoxy films fully cured by optimum condition such as mechanical properties like $T_g$, tensile strength, elongation at break hardness, abrasion resistance and chemical properties like water absorption, acid resistance, alkali resistance and electrical properties, corrosion resistance are determined by various measuring devices and analyses devices. In conclusion, phenolic curing agent was shown excellent thoughness but severe color change as temperature increased. Acid anhydride has excellent insulation properties and color stability at elevated temperature but lower thoughness and adhesion to substrate. DICY curing agent was shown high water absorption and severe color chance as temperature increased.

  • PDF

Relationship between Pollen Concentration and Meteorological Condition in an Urban Area (도시지역 공중화분 농도와 기상조건과의 관계)

  • Oh, In-Bo;Kim, Yangho;Choi, Kee-Ryong;Lee, Ji Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.6
    • /
    • pp.780-788
    • /
    • 2013
  • This study attempted to determine important meteorological parameters related to airborne pollen concentrations in urban areas. Hourly pollen measurement data were prepared from a regular sampling with a volumetric Burkard spore trap at a site in the Ulsan city, during the spring season (March~May) of 2011. Results showed that the daily mean and maximum concentrations for total pollen counts during the spring season were statistically significantly correlated with both air temperature and wind speed; daily mean pollen concentration was the most highly related to daily maximum temperature (r=0.567, p<0.001). It was also identified that pollen concentration has a stronger relationship with wind speed at the rural site than at the urban one, which confirms that strong wind conditions over the pollen sources area can be favorable for pollen dispersal, resulting in increases in airborne pollen concentrations downwind. From the results of an oak-pollen episode analysis, it was found that there was a significant relationship between hourly variation of oak pollen concentrations and dynamic meteorological factors, such as wind and mixing height (representing the boundary layer depth); especially, a strong southwestern wind and elevated mixing height was associated with high nocturnal concentrations of oak pollen. This study suggests that temperature, wind, and mixing height can be important considerations in explaining the pollen concentration variations. Additional examination of complex interactions of multiple meteorological parameters affecting pollen behavior should be carried out in order to better understand and predict the temporal and spatial pollen distribution in urban areas.

Thermo-mechanical analysis of reinforced concrete slab using different fire models

  • Suljevic, Samir;Medic, Senad;Hrasnica, Mustafa
    • Coupled systems mechanics
    • /
    • v.9 no.2
    • /
    • pp.163-182
    • /
    • 2020
  • Coupled thermo-mechanical analysis of reinforced concrete slab at elevated temperatures from a fire accounting for nonlinear thermal parameters is carried out. The main focus of the paper is put on a one-way continuous reinforced concrete slab exposed to fire from the single (bottom) side as the most typical working condition under fire loading. Although contemporary techniques alongside the fire protection measures are in constant development, in most cases it is not possible to avoid the material deterioration particularly nearby the exposed surface from a fire. Thereby the structural fire resistance of reinforced concrete slabs is mostly influenced by a relative distance between reinforcement and the exposed surface. A parametric study with variable concrete cover ranging from 15 mm to 35 mm is performed. As the first part of a one-way coupled thermo-mechanical analysis, transient nonlinear heat transfer analysis is performed by applying the net heat flux on the exposed surface. The solution of proposed heat analysis is obtained at certain time steps of interest by α-method using the explicit Euler time-integration scheme. Spatial discretization is done by the finite element method using a 1D 2-noded truss element with the temperature nodal values as unknowns. The obtained results in terms of temperature field inside the element are compared with available numerical and experimental results. A high level of agreement can be observed, implying the proposed model capable of describing the temperature field during a fire. Accompanying thermal analysis, mechanical analysis is performed in two ways. Firstly, using the guidelines given in Eurocode 2 - Part 1-2 resulting in the fire resistance rating for the aforementioned concrete cover values. The second way is a fully numerical coupled analysis carried out in general-purpose finite element software DIANA FEA. Both approaches indicate structural fire behavior similar to those observed in large-scale fire tests.

Remediation of benzo[a]pyrene Contaminated Soil using Subcritical Water (아임계수를 이용한 토양 내 벤조[a]피렌 정화)

  • Shin, Moon-Su;Islam, Mohammad Nazrul;Jo, Young-Tae;Park, Jeong-Hun
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.6
    • /
    • pp.13-17
    • /
    • 2014
  • Subcritical water acts like an organic solvent at elevated temperature in terms of its physicochemical properties. Taking into account this advantage, the remediation experiments of benzo[a]pyrene contaminated soil (8.45 mg/kg of initial concentration) were conducted using subcritical water extraction apparatus. The effect of operating factors on the removal efficiency was studied at the varying the conditions of the water temperature ranging $200{\sim}300^{\circ}C$, extraction time 30~90 min, and flow rate 0.3~2.0 mL/min. 12 g of benzo[a]pyrene contaminated soil was inserted into the extraction cell and placed into the reactor and then the subcritical water was driven through the cell. In this study, the removal efficiency of benzo[a]pyrene was increased from 55.1 to 98.1% when the temperature increased from 200 to $300^{\circ}C$. The removal efficiency was decreased from 97.0 to 77.0% when the flow rate increased from 0.3 to 2.0 mL/min, suggesting that the extraction is limited by intra-particle diffusion. The 30 min reaction time was determined as an effective treatment time at $250^{\circ}C$. Based on the results, the optimum condition for the remediation of benzo[a]pyrene contaminated soil was suggested to be $250^{\circ}C$, 30 min, and 0.3 mL/min.

Prediction of Seedling Emergence and Early Growth of Eleocharis kuroguwai Ohwi under Evaluated Temperature (상승된 온도 조건에서 올방개(Eleocharis kuroguwai)의 출아 및 초기생장 예측)

  • Kim, Jin-Won;Moon, Byeong-Chul;Lim, Soo-Hyun;Chung, Ji-Hoon;Kim, Do-Soon
    • Korean Journal of Weed Science
    • /
    • v.30 no.2
    • /
    • pp.94-102
    • /
    • 2010
  • Field and pot experiments were conducted to investigate seedling emergence and early growth of Eleocharis kuroguwai panted on different dates. Non-linear regression analyses of observed data against effective accumulated temperature (EAT) with the Gompertz model showed that the Gompertz model works well in describing seedling emergence and early growth of E. kuroguwai regardless of planting date and soil burial depth. EATs required for 50% of the maximum seedling emergence of E. kuroguwai planted at 1, 3 and 5 cm soil burial depth in the pot experiment were estimated to be 54.5, 84.0 and $118.0^{\circ}C$, respectively, and $56.7^{\circ}C$ when planted at 1 cm in the field experiment. EATs required for 50% of the maximum leaf number of E. kuroguwai planted at 1, 3 and 5 cm soil burial depth in the pot experiment were estimated to be 213.3, 249.0 and $291.6^{\circ}C$, respectively, and $239.5^{\circ}C$ when planted at 1 cm in the field experiment. Therefore, models developed in this study thus predicted that if rotary tillage with water is made on 27 May under $+2^{\circ}C$ elevated temperature condition, dates for 50% of the maximum seedling emergence, 5 leaf stage and 5 cm plant height of E. kuroguwai buried at 3 cm soil depth were predicted to be 2 June, 10 June and 12 June. These dates are 1 day earlier for the seedling emergence and 3 days earlier for the early growth as compared with current temperature condition, suggesting that earlier application of herbicides is required for effective control of E. kuroguwai.

Study of Corrosion-Induced Failure Mechanisms of Epoxy Coated Reinforcing Steel (Parts I and II)

  • Lee, Seung-kyoung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.396-401
    • /
    • 1995
  • Epoxy coated reinforcing steels (ECRs) were acquired from ten sources and coatings from each source were initially characterized in terms of defects, thickness, solvent extraction weight loss and hardness. Testing involved exposure in three aqueous solutions at elevated temperature (8$0^{\circ}C$) and in chloride-contaminated concrete slabs under outdoor exposure, It was found that the density and size of coating defects was the promary factor affecting ECR performance. The equivalent circuit analysis using electrochemical impedance spectroscopy (EIS) data indicated that the impedance response for well-performing ECR specimens showed no signs of active degradation at the interface although diffusional processes similar to those noted for poorly performing bars occurred here. Experimental results also indicated a relationship between corrosion behavior and bar source. Weight loss upon solvent extraction correlated with impedance reduction from hot water exposure. Coating defects during most of the tests, especially in high pH solutions containing chloride ions. ECRs with excessive coating defects, either initially present or ones which developed in service, performed poorly in every test category regardless of source. Forms of coating failure were extensive rusting at defects, blistering, wet adhesion loss, cathodic delamination, underfilm corrosion and coating cracks. These occurred sequentially or concurrently, depending on the condition of the ECR and nature of the environment

  • PDF

Assessment of some parameters of corrosion initiation prediction of reinforced concrete in marine environments

  • Moodi, Faramarz;Ramezanianpour, Aliakbar;Jahangiri, Ehsan
    • Computers and Concrete
    • /
    • v.13 no.1
    • /
    • pp.71-82
    • /
    • 2014
  • Chloride ion ingress is one of the major problems that affect the durability of concrete structures such as bridge decks, concrete pavements, and other structures exposed to harsh saline environments. Therefore, durability based design of concrete structures in severe condition has gained great significance in recent decades and various mathematical models for estimating the service life of rein-forced concrete have been proposed. In spite of comprehensive researches on the corrosion of rein-forced concrete, there are still various controversial concepts in quantitation of durability parameters such as chloride diffusion coefficient and surface chloride content. Effect of environment conditions on the durability of concrete structures is one of the most important issues. Hence, regional investigations are necessary for durability based design and evaluation of the models. Persian Gulf is one of the most aggressive regions of the world because of elevated temperature and humidity as well as high content of chloride ions in seawater. The aim of this study is evaluation of some parameters of durability of RC structures in marine environment from viewpoint of corrosion initiation. For this purpose, some experiments were carried out on the real RC structures and in laboratory. The result showed that various uncertainties in parameters of durability were existed.