• 제목/요약/키워드: Elevated Temperature Fatigue

검색결과 73건 처리시간 0.019초

입자강화 금속기 복합재료의 고온 피로강도 향상에 관한 연구 (A Study on the Improvement of Fatigue Strength in Particulate Reinforced Metal Matrix Composites at Elevated Temperatures)

  • 신형섭
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1146-1154
    • /
    • 2000
  • Fatigue strength of NiAl and Ni$_3$Al particulate reinforced aluminum alloy composites fabricated by the diecasting method was examined at room and elevated temperatures. The results were compared wit h that of SiC particulate reinforced one. The particulate reinforced composites showed some improvement in the static and fatigue strength at elevated temperatures when compared with that of Al alloy. The composites reinforced by intermetallic compound particles showed good fatigue strengths at elevated temperatures especially $Ni_3AI_{p}/Al$ alloy composite showed good fatigue limit up to high temperature of 30$0^{\circ}C$. Adopting intermetallic compound particle as a reinforcement phase, it will be possible to develop MMC representing better fatigue property at elevated temperature.

표면균열을 갖는 원형봉재 시편을 이용한 고온 피로균열성장 연구 (A Study on Elevated Temperature Fatigue Crack Growth Using Round Bar Specimen with a Surface Crack)

  • 소태원;윤기봉
    • 대한기계학회논문집A
    • /
    • 제20권11호
    • /
    • pp.3415-3423
    • /
    • 1996
  • The compact tension specimen geometry has been widely used for measuring fatigue crack growth rates at elevated temperature when the fatigue load is under tension/tension condition. However, most of the elevated temperature components which have significant crack growth life experience fatigue load under tension/compression conditions. Thus test techniques are required since the compact tension specimen cannot be used for tension/compression loading. In this paper, a simplified test procedure for measureing fatigue crack growth rates is proposed, which employs a round bar specimen with a small surface crack. Fatigue crack growth rates under tension/ tension loading conditions at elevated temperature were measured according to the proposed procedure and compared with those previously measured by C/(T) specimens. Since both the measured crack growth rates were comparable, the fatigue crack growth rates under tension/ compression load can be reliably measured by the proposed procedure. For monitoring crack depth. DC electric potential method is employed and an optimal probe location and current input conditions were proposed.

The Wearing Sense of Male Adult Shoes - Comparison of Common Shoes with Elevated Shoes -

  • Shim, Boo-Ja;Yoo, Hyun
    • 패션비즈니스
    • /
    • 제11권6호
    • /
    • pp.35-51
    • /
    • 2007
  • This research was administered in order to know the effects of heels on the foot by comparing the foot environmental characteristics when common shoes and elevated shoes are worn. First, 157 male adults in their 20s through 40s living in Busan were the inquiry subjects to reveal the shoes-wearing reality of adult males. Second, 7 male adults in their early 20s became the subjects for the experiments of wearing common shoes and elevated shoes. 1. Inquiry Results of Shoes-Wearing Reality Common-shoes wearers were in the order: 20s (43.9%) > 30s (24.8%) > 40s (8.3%). Elevated-shoes wearers were mostly 20s (12.1%), followed by 30s (8.3%) and 40s (2.5%). Among the wearing effects of elevated shoes were 'looking taller' (66.7%), 'no height complex & more confidence' (30.6%), and 'higher work efficiency' (2.8%). In sum, 97.3% of the male subjects believed in great positive effects by wearing elevated shoes. 2. Shoes-Wearing Experiment Results In foot skin temperature, significant differences between the two groups were admitted in outer foot a (p<0.05) and other areas (p<0.001), except in the instep. Elevated-shoes group had bigger skin temperature, while the order of temperature was the instep, the big toe, inner foot a/b/c and outer foot a/b/c. Significant difference was accepted in total sweat rate (p<0.05) and local sweat rate (p<0.01). Elevated-shoes group appeared higher in both rates. Significant difference (p<0.001) between the two groups was recognized in fatigue degrees after wearing, whereas significance (p<0.05) in elevated-shoes group was approved in fatigue before and after exercise. So elevated-shoes group experienced more fatigue, especially after exercise.

질화규소의 고온정피로거동 (Elevated Temperature Static Fatigue in Silicon Nitride)

  • 최건;최배호;김기영
    • 한국세라믹학회지
    • /
    • 제36권1호
    • /
    • pp.15-20
    • /
    • 1999
  • 상압소결 질화규소에 대한 고온정피로 거동을 K-t(stress intensity/life test)법에 의해 조사하였다. 정피로 크랙성장속도는 온도의 증가와 함께 증가한다. 온도의 증가에 따라 크랙성장속도가 증가하는 이유는 온도 증가에 따라 파괴인성치가 감소하기 때문으로 판명되었다. 즉 정피로 크랙성장속도 da/dt를 da/dt=AK1m로 나타내면, 이 식의 정수 A는 파괴인성치의 파괴인성치의 함수이도, 지수 m은 온도나 파괴인성치에 관계없이 일정한 상수이다. 그러나 글래스상의 연화가 일어나는 고온의 경우 크랙성장속도는 이상의 관계로부터 벗어남을 발견하고, 그 이유에 대하여 고찰하였다.

  • PDF

Elevated Temperature Design of KALIMER Reactor Internals Accounting for Creep and Stress-Rupture Effects

  • Koo, Gyeong-Hoi;Bong Yoo
    • Nuclear Engineering and Technology
    • /
    • 제32권6호
    • /
    • pp.566-594
    • /
    • 2000
  • In most LMFBR(Liquid Metal Fast Breed Reactor) design, the operating temperature is very high and the time-dependent creep and stress-rupture effects become so important in reactor structural design. Therefore, unlike with conventional PWR, the normal operating conditions can be basically dominant design loading because the hold time at elevated temperature condition is so long and enough to result in severe total creep ratcheting strains during total service lifetime. In this paper, elevated temperature design of the conceptually designed baffle annulus regions of KALIMER(Korea Advanced Liquid MEtal Reactor) reactor internal strictures is carried out for normal operating conditions which have the operating temperature 53$0^{\circ}C$ and the total service lifetime of 30 years. For the elevated temperature design of reactor internal structures, the ASME Code Case N-201-4 is used. Using this code, the time-dependent stress limits, the accumulated total inelastic strain during service lifetime, and the creep-fatigue damages are evaluated with the calculation results by the elastic analysis under conservative assumptions. The application procedures of elevated temperature design of the reactor internal structures using ASME Code Case N-201-4 with the elastic analysis method are described step by step in detail. This paper will be useful guide for actual application of elevated temperature design of various reactor types accounting for creep and stress-rupture effects.

  • PDF

차원해석법에 의한 고온피로 파괴 모델의 기초적 연구 (A Basic Study on Fatigue Fracture Model at Elevated Temperatures by the Dimensional Analysis Method)

  • 서창민;김영호;권오헌
    • 한국해양공학회지
    • /
    • 제6권1호
    • /
    • pp.105-112
    • /
    • 1992
  • The main purpose of this study is to derive a law of fatigue crack growth rate in the region of elastic or elasto-plastic fracture mechanics at elevated temperatures through the application of dimensional analysis. An equation of elasto-plastic fatigue crack growth rate at elevated temperatures appeared a new Arrhenius type equation containing J-integral range and absolute temperature. The elastic or elasto-plastic crack growth rate equation shows a fairly good agreement with the experimental results for Cr-Mo-V rotor steel and Hastelloy-X alloy in the comparatively wide temperature ranges.

  • PDF

고온하 복수 표면균열의 성장 합체거동과 시뮬레이션에 관한 연구 (Fatigue Crack Growth, Coalescence Behavior and its Simulation on Multi-Surface Cracks Under the Elevated Temperature)

  • 서창민;황남성;윤기봉
    • 한국해양공학회지
    • /
    • 제9권1호
    • /
    • pp.142-151
    • /
    • 1995
  • A simulation program concerned with multi-surface fatigue cracks which initiated at the semi-circular surface notches has been developed to predict their growth and coalescence behaviors at the elevated temperature. Three kinds of coalescence models such as SPC(surface point connection), ASME and BSI(British Standards Institution) conditions were applied, and the results of the simulation were compared with those of the experiment. This simulation is able to enhance the reliance and integrity of structures especially under the elevated temperature which have lots of difficulties in experiments and applications. This shows that the simulation result has utility for fatigue life prediction. Even though all the specimens were the same shape, the error rate was increased in accordance with the applied stress to the specimen. Among the material constants C and m in the narrow band, the results applied upper values of the band to the simulation has shown quite small error compared with the experiment results.

  • PDF

고온 피로균열 성장거동 관찰을 위한 코팅기술의 응용 (Application of Coating Technique for Measurement of Elevated Temperature Fatigue Crack Growth Behavior)

  • 남승훈;김용일;서창민;김동석
    • 한국해양공학회지
    • /
    • 제16권2호
    • /
    • pp.60-66
    • /
    • 2002
  • The remote measurement system(RMS) as a new experimental method is limited in its application to crack measurement at elevated temperatures because of the oxide layer on the specimen surface. Since TiAIN and Cr coating layers have a high resistance to oxidation and wear, this paper proposed a TiAIN and Cr coating technique for specimens to facilitate the measurement of crack growth behavior using RMS. To investigate the effects of the coating layer, tension and fatigue tests were carried out at room temperature and at $538^{\circ}C$. The test material was 1Cr-1Mo-0.25V steel which is widely used as a turbine rotor material. From the experimental results, it was found that the mechanical properties of the TiAIN and Cr coated specimens were similar to those of the substrate. Accordingly, the TiAIN and Cr coated layer had hardly any influence on the fatigue crack propagation.

軟鋼의 高溫 表面渡勞균열 成長擧動에 관한 硏究 (A Study on Propagation Behavior of Surface-Fatigue-Crack in the Mild Steel at Elevated Temperatures)

  • 김규남;서창민;;강성수
    • 대한기계학회논문집
    • /
    • 제7권4호
    • /
    • pp.425-433
    • /
    • 1983
  • Fatigue tests by axial loading (R=0.1) were carried out to investigate fatigue crack growth properties of small surface cracks in mild steel at room temperature, 250.deg. C and 400.deg. C, by using flat specimens with a small artificial pit. All the data of the fatigue crack growth rate obtained in the present tests are determined as a function of the stress intensity factor range, so that the applicability of liner fracture mechanics to the fatigue crack growth of surface cracks at elevated temperatures is investigated and discussed in comparison with the data of type 304 stainless steel at room temperature and elevated temperature. The obtained results are as follows: 1) Relations of both surface fatigue crack length and its depth to cycle ratio fall within a narrow scatter band in spite of different stress levels. 2) The .DELTA. .sigma. .root. .pi. a-da/dN relation of surface fatigue crack growth at room temperature is independent of the stress level and can be plotted as a straight line at log-log diagram, but the relation at 400.deg. C depends partly on the stress level. 3) Relations of the fatigue crack growth into depth d(2b)/dN and is stress intensity factor range .DELTA. $K_{I}$, accounted for the aspect ratio variation, fall within a narrow scatter band for wide range of the applied stress levels. And .DELTA. $K_{I}$E-d(2b)/dN relations of mild steel at different stress level coincide relatively well with the data of type 304 stainless steel. 4) The value of aspect ratio obtained by a beach mark method and a temper coloring method approaches about 0.9 in common with crack growth and it is independent of stress level and temperatures. 5) The equi-crack length curve is parallel to S-N$_{f}$ curve at elevated temperatures.s.s.s.

SUS 316鋼 의 高溫低사이클 피勞擧動 에 미치는 粒界절出物 의 影響 (Effect of grain boundary precipitation on low-cycle fatigue behavior aat elevated temperature of SUS 316 stainless steel)

  • 오세욱;국미무;산전방박;좌등철
    • 대한기계학회논문집
    • /
    • 제4권4호
    • /
    • pp.152-159
    • /
    • 1980
  • The temperature and the grain boundary precipitation have the great influence on the low-cycle fatigue behavior of austenite stainless steel at elevated temperature. For the purpose of investigating the mechanism concerning the change of fatigue micro crack mode in SUS 316 under various conditions low-cycle fatigue test was carried out at the elevated temperature 600.deg.C, plastic strain range 2% and constant strain rate .5c.p.m. A special attention is given to the observation of intergranular crack initiation. The results obtained are summarized as follows. The low-cycle fatigue behavior of SUS 316 at 600.deg.C is affected by transition of crack initiation mode from intergranular to transgranular. The transition is due to the aging effect, which is caused by grain boundary precipitations of Cr$\_$23/C$\_$6/. Since the intergranular crack initiation is brought about by the grain boundary sliding, the transgranular crack initiates in case that the strengthening of grain boundary due to the precipitation of Cr$\_$23/C$\_$6/ carbides takes place ahead of the intergranular crack initiation.