• 제목/요약/키워드: Elementary mathematics curriculum

검색결과 601건 처리시간 0.015초

미지수가 2개인 연립일차부등식의 문제해결과정에서 발생하는 오류 분석 및 지도방안 연구 (On the analysis and correction of error for the simultaneous inequality with two unknown quantities)

  • 전영배;노은환;김대의;정찬식;김창수;강정기;정상태
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제24권3호
    • /
    • pp.543-562
    • /
    • 2010
  • 본 연구는 미지수가 2개인 연립 부등식을 해결하는 과정에서 발생하는 오류에 대해 분석하고 오류에 따른 교수-방법을 제공하는데 그 목적이 있다. 먼저, 미지수가 2개인 연립 부등식을 소개하고, 연구자가 지도하고 있는 한 학생이 제안한 풀이를 보여준다. 미지수가 2개인 연립 부등식의 문제를 해결하는 과정에서 학생은 오류를 범하고 있는데, 본 연구에서는 이러한 오류에 대해 해석기하적 접근(xy-평면에서의 오류진단, ab-평면에서의 오류진단), 대수적 접근, 공리적 접근의 방법으로 오류를 진단하고 적절한 지도방법을 모색하고자 한다. 학생이 문제를 해결하는 과정에서 범한 오류는 미지수가 2개인 연립일차부등식의 내용을 학습하기 전에 배우게 되는 내용 중 '8-가 단계'에서 학습하는 미지수가 2개인 연립 일차방정식의 내용이 미지수가 2개인 연립일차부동식의 내용과 유사한 점이 많기 때문에 미지수가 2개인 연립일차부동식과 관련된 문제를 해결하는 과정에서 미지수가 2개인 연립일차방정식을 학습하면서 익힌 풀이 방법이 같은 방법으로 적용될 것이라는 오개념과 미지수가 2개인 연립일차부등식과 관련된 불충분한 내용의 교육과정 때문에 발생한 것이다. 학생이 범한 오류에 대해 학생의 문제 풀이 과정을 해석기하적, 대수적 접근을 통해 면밀히 분석한 결과 학생이 범한 오류는 미지수가 2개인 연립일차부등식을 해결하는 과정에서 2개의 변수들 사이의 상호관련성을 간과하여 발생한 결과임을 알 수 있다. 따라서 본 연구는 오류를 범하기 쉬운 마지수가 2개인 연립일차부등식과 관련된 문제를 해결하는 과정에서 2개의 변수 사이의 관련성에 대해 해석기하적 접근, 대수적 접근, 공리적 접근을 통하여 2개의 변수들 사이의 상호관련성에 대해 학생들에게 주지시켜야 하고 아울러 미지수가 2개인 연립일차부등식을 다룰 경우 대수적 기법이 변수들 사이의 관련성으로 인하여 조심스러워야 하므로 해석기하적으로 좌표평면을 도입하여 문제에 접근해야함을 강조한다.