• Title/Summary/Keyword: Elemental sulfur(S)

Search Result 66, Processing Time 0.026 seconds

Ionic-additive Crosslinked Polymeric Sulfur Composites as Cathode Materials for Lithium-Sulfur Batteries

  • Seong, Min Ji;Manivannan, Shanmugam;Kim, Kyuwon;Yim, Taeeun
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.453-457
    • /
    • 2021
  • Lithium-sulfur (Li-S) batteries are one of attractive energy conversion and storage system based on high theoretical specific capacity and energy density with low costs. However, volatile nature of elemental sulfur is one of critical problem for their practical acceptance in industry because it considerably affects electrode uniformity during electrode manufacturing. In this work, polymeric sulfur composite consisting of ionic liquid (IL) are suggested to reduce volatility nature of elemental sulfur, resulting in better processibility of the Li-S cell. According to systematic spectroscopic analysis, it is found that polymeric sulfur is consisting of repeating units combining with elemental sulfur and volatility of them is negligible even at high temperature. In addition, the IL-embedded polymeric sulfur shows moderate cycle performance compared to the cell with elemental sulfur. From these results, it is found that the IL-embedded polymeric sulfur composite is applicable cathode candidate for the Li-S cell based on their excellent non-volatility as well as their superior electrochemical performance.

Characterization of Sulfur Oxidation by an Autotrophic Sulfur Oxidizer, Thiobacillus sp. ASWW-2

  • Lee Eun Yaung;Cho Kyung-Suk;Ryu Hee Wook
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.1
    • /
    • pp.48-52
    • /
    • 2000
  • An autotrophic sulfur oxidizer, Thiobacillus sp. ASWW-2, was isolated from activated sludge, and its sulfur oxidation activity was characterized. Thiobacillus sp. ASWW-2 could oxidize elemental sulfur on the broad range from pH 2 to 8. When 5-50 g/L of elemental sulfur was supplemented as a substrate, the growth and sulfur oxidation activity of Thiobacillus sp. ASWW-2 was not inhibited. The specific sulfur oxidation rate of strain ASWW-2 decreased gradually until sulfate was accumulated in medium up to 10 g/L. In the range of sulfate concentration from 10 g/L to 50 g/L, the sulfur oxidation rate could keep over $2.0g-S/g-DCW{\cdot}d$. It indicated that Thiobacillus sp. ASWW-2 has tolerance to high concentration of sulfate.

  • PDF

Acidification and Changes of Mineral Nutrient Availability in Soils Amended with Elemental Sulfur

  • Kim, Byoung-Ho;Chung, Jong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.22-28
    • /
    • 2011
  • With the increasing cultivation of acid-loving plants such as blueberries, the artificial acidification of soils is frequently required. This research was conducted to determine the application rates of elemental sulfur (S) required in the soil acidification for blueberry cultivation. Laboratory incubation experiment was conducted to acidify three arable soils (pH 6-7) of different texture to pH 4.5-5.0 by the addition of varying amounts of elemental S. All rates of elemental S addition reduced soil pH, although the efficacy of acidification was related to the application rate and soil characteristics. pH reduction was slow in sandy loam soil, and the final equilibrium pH was obtained after 60, 43, and 30 days of incubation in sandy loam, loam, and silty clay, respectively. Although the final pHs obtained after 93 days of incubation were not significantly different among the three soils, the equilibrium pH was relatively higher in soil of higher clay content in the application rates of 1.5-2.0 g S $kg^{-1}$ soil. The estimated amounts of elemental S required in lowering pH to 4.5-5.0 were 0.59-1.01, 0.67-1.03, and 0.53-0.88 g S $kg^{-1}$ for sandy loam, loam, and silty clay, respectively. The lowest estimated amount of elemental S in the acidification of silty clay soil was attributable to the low organic matter content. For clay soils containing optimum level of organic matter, the application rates of elemental S should be much higher than those values estimated in this research. Soil acidification did not significantly increase the available concentrations of Ca, Mg and K. Extractable Cu and Zn was not greatly affected by the acidification, but extractable Fe, Mn, and Al in the acidified soils were higher than those found in non-acidified soils. Such increases in solubility are attributable to the dissolution of oxides and hydroxides of the elements.

Growth Characteristics of Acidithiobacillus thiooxidans in Different Sulfur Concentrations (황 농도에 따른 Acidithiobacillus thiooxidans의 생장 특성)

  • Lee, Eun-Young;Cho, Kyung-Suk;Ryu, Hee-Wook
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.4
    • /
    • pp.338-341
    • /
    • 2006
  • The growth characteristics of sulfur-oxidizing bacteria, Acidithiobacillus thiooxidans AZ11, MET, and TAS were investigated in mineral salt media supplemented with elemental sulfur of 1$\sim$50 g $L^{-1}$. The sulfur oxidation rates of A. thiooxidans. MET and TAS increased highly with increasing sulfur concentration up to 10 g L$^{-1}$, but the rates increased slowly in sulfur concentration over 10 g L$^{-1}$. A. thiooxidans AZ11 showed the parallel increase of sulfur oxidation rate until sulfur concentration increased up to 40 g L$^{-1}$. The maximum sulfur oxidation rates (V$_{max}$) of AZl1, MET and TAS were 1.88, 1.38 and 0.43 g S L$^{-1}$ d$^{-1}$, respectively. The maximum specific growth rates (${\mu}_{max}$) of AZ11, MET, and TAS were 0.33 d$^{-1}$, 0.30 d$^{-1}$ and 0.45 d$^{-1}$, respectively. Although MET and TAS couldn't grow at sulfate concentration of 40 g L$^{-1}$, AZ11 could grow in the presence of 58 g L$^{-1}$ sulfate, the final oxidation product of elemental sulfur.

Autrophic Denitrification of Bank Filtrate Using Elemental Sulfur (황을 이용한 강변여과수의 독립영양탈질)

  • 문희선;남경필;김재영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.209-212
    • /
    • 2000
  • As a bench-scale study, transformation of nitrate to nitrogen gas under anoxic condition was determined by using autotrophic denitrifiers containing Thiobacillus denitrificans and elemental sulfur as an electron donor. The research objective is to measure the basic kinetic parameters of autotrophic denitrification reaction on the removal efficiency of nitrate. The results showed that nitrate was almost completely transformed to nitrite in the first 4 days of column operation. After 2 days of accumulation of nitrite, its concentration slowly decreased and the compound was detected less than 0.5 mg/L in 14 days. In the experiment, sulfate concentration in the effluent was the 70~90 mg-S/L and the pH was maintained around pH 7.5. When nitrate concentration of bank filtrate in the real field is considered, this sulfate concentration seems to be acceptable. At 17 cm from the bottom of the column, the effluent showed the highest nitrite concentration, and nitrate concentration decreased rapidly to the Point of 33 cm from the bottom. The results suggest that an appropriate thickness of permeable reactive barriers is about 30 cm.

  • PDF

Binary Mixture Toxicity of AROCLOR 1248, Oleic Acid, and Elemental Sulfur to Vibrio fischeri Luminescence

  • Kalciene, Virginija;Dabkeviciene, Daiva;Cetkauskaite, Anolda
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1541-1546
    • /
    • 2015
  • The objective of this research was to evaluate the toxicity of the industial xenobiotic Aroclor 1248 (A) and natural origin substances~elemental sulfur (S80) and oleic acid (OA) and their binary mixtures to V. fischeri bioluminescence during the prolonged exposure time (up to 60 min). The bioluminescence quenching test was used to determine the toxic effects. Full factorial experiment design and multiple regression analysis and the comparison of binary mixture effect with the sum of effects of individual chemicals were used for the evaluation of combined effects of toxicants. The analysis of general trend of mixture toxicity to bioluminescence showed that mixture toxic effects were reversible up to 60 min. Data analysis revealed different joint effects, which were depended on mixture composition. S80 enhanced toxic effect of A and acted additively with synergistic interaction. Hydrophobic OA in mixture with A acted antagonistically and in mixture with sulfur caused an additive effect with antagonistic component of interaction. It was concluded that low concentrations of natural toxic substances present in environmental samples as mixtures of chemicals can define the toxicodynamic character of industrial xenobiotics.

Lithium/Sulfur Secondary Batteries: A Review

  • Zhao, Xiaohui;Cheruvally, Gouri;Kim, Changhyeon;Cho, Kwon-Koo;Ahn, Hyo-Jun;Kim, Ki-Won;Ahn, Jou-Hyeon
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.97-114
    • /
    • 2016
  • Lithium batteries based on elemental sulfur as the cathode-active material capture great attraction due to the high theoretical capacity, easy availability, low cost and non-toxicity of sulfur. Although lithium/sulfur (Li/S) primary cells were known much earlier, the interest in developing Li/S secondary batteries that can deliver high energy and high power was actively pursued since early 1990’s. A lot of technical challenges including the low conductivity of sulfur, dissolution of sulfur-reduction products in the electrolyte leading to their migration away from the cathode, and deposition of solid reaction products on cathode matrix had to be tackled to realize a high and stable performance from rechargeable Li/S cells. This article presents briefly an overview of the studies pertaining to the different aspects of Li/S batteries including those that deal with the sulfur electrode, electrolytes, lithium anode and configuration of the batteries.

Removal of H2S by Selective Catalytic Oxidation II. Selective Oxidation of H2S on TiO2/SiO2 Catalysts (선택적 촉매 산화 반응에 의한 황화 수소의 제거 II. TiO2/SiO2 촉매 상에서 황화 수소의 선택적 산화 반응)

  • Chun, S.W.;Park, D.W.;Woo, H.C.;Hong, S.S.;Chung, J.S.
    • Applied Chemistry for Engineering
    • /
    • v.7 no.4
    • /
    • pp.645-652
    • /
    • 1996
  • Selective catalytic oxidation of $H_2S$ to elemental sulfur using $TiO_2/SiO_2$ catalysts was investigated in this study. The reaction test with pure $TiS_2$ and $Ti(SO_4)_2$ and cyclic temperature operation revealed that $TiO_2$ had a good resistance to sulfation and sulfidation, which are known as the main cause of catalytic deactivation in sulfur recovery process. With the increase of $TiO_2$ loading amount in $TiO_2/SiO_2$ catalysts, the conversion of $H_2S$ increased and the selectivity of elemental sulfur was very slightly decreased. As the ratio of $O_2/H_2S$ increased, the selectivity to elemental sulfur was drastically decreased. In the presence of 10 vol.% water vapor to a stoichiometric mixture of $H_2S$ and $O_2$($H_2S$= 5 vol.% O=2.5 vol.% ), both activity and selectivity of 10 wt.% $TiO_2/SiO_2$ catalyst are decreased, but it still showed more than 80% of sulfur yield.

  • PDF

Determination of Sulfur Requirement to Adjust pH of Alkaline Soil by Buffer Curve Method (알칼리성 토양 pH 교정시 완충곡선법을 이용한 황 시용량 결정)

  • Lee, In-Bog;Lim, Jae-Hyun;Yiem, Myoung-Soon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.405-415
    • /
    • 2000
  • To determine application rate of elemental sulfur to adjust pH of alkaline soil, buffer curve method was investigated. The elemental sulfur required to control pH 8.3 to pH 6.3 by buffer curve calculation was treated in two soils of silty loam and sandy loam, and the sulfur-mixed soils were moistened with 50% of water holding capacity during incubation of 6 weeks at $30^{\circ}C$. Soil pH was lowered with incubation and reached to target point after 4 weeks of incubation, and elemental sulfur was oxidised entirely to sulfate. This means that buffer curve has the accuracy to determine sulfur application rate in alkaline soil. However it is estimated that application rate of sulfur should be carefully determined in the field scale. Excess application of elemental sulfur resulted in extremely low soil pH and caused the hinderance of lettuce growth by nutritional imbalance and ion toxicity. To simplify the determination procedure of sulfur requirement, buffer curve method by addition of 0.1N-HCl solution as unit of mL was developed, it was compared with theroutine methods which diluted $H_2SO_4$ solution and $Ca(OH)_2$ are added as cmolc per kg soil to adjust each pH step. Buffer capacities, cmolc kg $soil^{-1}$ $pH^{-1}$, calculated from two buffer curves were not significantly different. The result indicates that buffer curve method by 0.1N-HCl can be used to adjust high pH of alkaline soil.

  • PDF

Study of Growth and Temperature Dependence of SnS Thin Films Using a Rapid Thermal Processing (황화급속열처리를 이용한 SnS 박막성장 및 온도의존성 연구)

  • Shim, Ji-Hyun;Kim, Jeha
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.2
    • /
    • pp.95-100
    • /
    • 2016
  • We fabricated a tin sulfide (SnS) layer with Sn/Mo/glass layers followed by a RTP (rapid thermal processing), and studied the film growth and structural characteristics as a function of annealing temperature and time. The elemental sulfur (S) was cracked thermally and applied to form SnS polycrystalline film out of the Sn percursor at pre-determined pressures in the RTP tube. The sulfurization was done at the temperature from $200^{\circ}C$ to $500^{\circ}C$ for a time period of 10 to 40 min. At ${\leq}300^{\circ}C$, 20 min., p-type SnS thin films was grown and showed the best composition of at.% of [S]/[Sn] $${\sim_=}$$ 1 and [111] preferred orientation as investigated from using XRD (X-ray diffraction) analysis and EDS (energy dispersive spectroscopy) and SEM (scanning electron microscopy), and optical absorption by a UV-VIS spectrometer. In this paper, we report the details of growth characteristics of single phase SnS thin film as a function of annealing temperature and time associated with the pressure and ambient gas in the RTP tube.