• Title/Summary/Keyword: Element inverse

검색결과 359건 처리시간 0.024초

변형이력을 고려한 세장비가 큰 직사각컵 성형공정의 다단계 유한요소 역해석 (Multi-stage Inverse Finite Element Analysis of Multi-stage Rectangular Cup Drawing Processes with Large Aspect Ratio Considering Deformation History)

  • 김승호;김세호;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.94-97
    • /
    • 2001
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of computation time and effort. For multi-stage deep-drawing processes, numerical analysis is extremely difficult to carry out due to its complexities and convergence problem as well as tremendous computation time. In this paper, multi-stage finite element inverse analysis is applied to multi-stage rectangular cup drawing processes to calculate intermediate blank shapes and strain distributions in each stages. Deformation history of the previous stage is considered in the computation. Finite element patches are used to describe arbitrary intermediate sliding constraint surfaces.

  • PDF

임의 곡면의 금형형상이 고려된 미끄럼 구속면을 이용한 직사각컵의 다단계 유한요소 역해석 (Multi-stage Inverse Finite Element Analysis of Rectangular Cup Drawing considering Sliding Constraint Surfaces with Arbitrary Intermediate Die Shapes)

  • 김승호;김세호;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 추계학술대회 논문집
    • /
    • pp.158-161
    • /
    • 2000
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of computation time and effort. For multi-stage deep-drawing processes, numerical analysis is extremely difficult to carry out due to its complexities and convergence problem as well as tremendous computation time. In this paper, multi-stage finite element inverse analysis is applied to multi-stage rectangular cup drawing processes to calculate intermediate blank shapes and strain distributions in each stages. Finite element patches are used to describe arbitrary intermediate sliding constraint surfaces.

  • PDF

다단계 유한요소 역해석을 이용한 세장비가 큰 직사작컵 성형 공정의 해석 (Analysis of Rectangular Cup Drawing Processes with Large Aspect Ratio Using Multi-Stage Finite Element Inverse Analysis)

  • 김승호;김세호;허훈
    • 소성∙가공
    • /
    • 제10권5호
    • /
    • pp.389-395
    • /
    • 2001
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of computation time and effort. For multi-stage deep-drawing processes with large aspect ratio, numerical analysis is extremely difficult to carry out due to its complexities and convergence problem. as well as tremendous computation time. In this paper, multi-stage finite element inverse analysis is applied to multi-stage rectangular cup drawing processes to calculate intermediate blank shapes and strain distributions in each stages. Deformation history of the previous stage is considered in the computation. Finite element patches are used to describe arbitrary intermediate sliding constraint surfaces.

  • PDF

역문제에 의한 평치차의 토크 해석 (Analysis of Torque on Spur Gear by Inverse Problem)

  • 박성완
    • 한국공작기계학회논문집
    • /
    • 제12권5호
    • /
    • pp.24-33
    • /
    • 2003
  • This study proposed a technique for inverse problem, linear approximation of contact position and loading in single and double meshing of transmission contact element using 2-dimension model considered near the tooth by root stress. Determination of root stress is carried out far the gear tooth by finite element method and boundary element method. Boundary element discretization near contact point is carefully performed to keep high computational accuracy. The predicted results of boundary element method are good accordance with that of finite element method.

탄성체의 경계 하중을 구하기 위한 역경계요소법 (An Inverse Boundary Element Method for Finding Boundary Tractions of an Elastic Body)

  • 이상훈;김현규
    • 한국전산구조공학회논문집
    • /
    • 제22권3호
    • /
    • pp.223-229
    • /
    • 2009
  • 대부분의 구조해석 문제는 외부하중에 대하여 구조물의 변형과 응력을 구하게 된다. 하지만 많은 분야에서 표면 트랙션과 내부 응력을 측정변위로 부터 구하기 위한 역문제 해석이 필요하게 된다. 본 연구에서는 구하고자 하는 트랙션 영역과 그와는 다른 영역의 변위를 측정하여 미지의 트랙션을 평가하는 역시스템을 경계요소법을 사용하여 수식화하였다. 본 연구에서 제시한 역경계요소법을 사용하여 측정변위의 작은 노이즈와 측정위치의 영향을 분석하였다.

동식물의 나선속의 하중(荷重) Hadamard Transform : 대칭과 Element-wise Inverse 행렬 (Weighted Hadamard Transform in the Helix of Plants and Animals :Symmetry and Element-wise Inverse Matrices)

  • 박주용;김정수;이문호
    • 한국인터넷방송통신학회논문지
    • /
    • 제16권6호
    • /
    • pp.319-327
    • /
    • 2016
  • 본 논문에서는 나무나 염소 뿔처럼 대부분의 동식물이 대칭임을 살펴본다. 또한 DNA를 가지고 있는 인간의 신체 역시 대칭이다. 피보나치수열, 식물의 나선, 동물의 대수 나선에서 볼 수 있는 것은 대칭이다. 해바라기 꽃은 원형이다. 원(元)은 원점을 중심으로 회전을 해도 모양이 꼭 같으므로 회전대칭이다. 공간상의 회전변환을 넘어서, 시간 공간의 대칭적 변환으로 일반화하면 아인슈타인의 특수상대성 이론이 시공간 변환관계이다. 동식물의 나선은 좌우 나선들이 대칭을 이루며 그 속에는 element-wise inverse가 존재한다. Hadamard 행렬 중 가운데 하중 값을 2로 준 것은 자연대수의 밑 2와 같고, 나선 행렬은 Symmetric하며 역행렬은 element-wise inverse이다.

역 문제에 대한 특이치 효율화 (Efficient Method of Singular Value for Inverse Problem)

  • 박성완
    • 한국생산제조학회지
    • /
    • 제21권2호
    • /
    • pp.232-240
    • /
    • 2012
  • This study proposed efficient method of singular value for inverse problem, linear approximation of contact position and loading in single and double meshing of transmission contact element, using 2-dimension model considered near the tooth by root stress. Determination of root stress is carried out for the gear tooth by finite element method and boundary element method. Boundary element discretization near contact point is carefully performed to keep high computational accuracy. The predicted results of boundary element method are good accordance with that of finite element method.

Hybrid DCT/DFflWavelet Architecture Based on Jacket Matrix

  • 진주;이문호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.281-282
    • /
    • 2007
  • We address a new representation of DCT/DFT/Wavelet matrices via one hybrid architecture. Based on an element inverse matrix factorization algorithm, we show that the OCT, OFT and Wavelet which based on Haar matrix have the similarrecursive computational pattern, all of them can be decomposed to one orthogonal character matrix and a special sparse matrix. The special sparse matrix belongs to Jacket matrix, whose inverse can be from element-wise inverse or block-wise inverse. Based on this trait, we can develop a hybrid architecture.

  • PDF

$GF(3^m)$ 상의 승산기 및 역원생성기 구성 (A Construction of the Multiplier and Inverse Element Generator over $GF(3^m)$)

  • 박춘명;김태한;김흥수
    • 대한전자공학회논문지
    • /
    • 제27권5호
    • /
    • pp.747-755
    • /
    • 1990
  • In this paper, we presented a method of constructing a multiplier and an inverse element generator over finite field GF(3**m). We proposed the multiplication method using a descending order arithmetics of mod F(X) to perform the multiplication and mod F(X) arithmetics at the same time. The proposed multiplier is composed of following parts. 1) multiplication part, 2) data assortment generation part and 5) multiplication processing part. Also the inverse element generator is constructed with following parts. 1) multiplier, 2) group of output registers Rs, 3) multiplication and cube selection gate Gl, 4) Ri term sequential selection part. 5) cube processing part and 6) descending order mod F(X) generation part. Especially, the proposed multiplier and inverse element generator give regularity, expansibility and modularity of circuit design.

  • PDF

Finite Element Analysis of Functionally Graded Plates using Inverse Hyperbolic Shear Deformation Theory

  • Kulkarni, Kamlesh;Singh, Bhrigu Nath;Maiti, Dipak Kumar
    • International Journal of Aerospace System Engineering
    • /
    • 제3권1호
    • /
    • pp.1-4
    • /
    • 2016
  • Functionally graded materials (FGMs) are becoming very popular in various industries due to their effectiveness of the utilization of their constituent elements. However, the modelling of these materials is difficult due to the complex nature of variation of material properties across the thickness. Many shear deformation theories have been developed and employed for the analysis of such functionally graded plates (FGPs). A recently developed inverse hyperbolic shear deformation theory has been successfully employed by Grover et al. [1] for the analysis of laminated composites and sandwich plates. The objective of the study is to obtain finite element solution for the structural analysis of functionally graded plates using inverse hyperbolic shear deformation theory. Finite element analysis facilitates the analysis of complex problems such as functionally graded plates with different boundary conditions and different loadings.