• 제목/요약/키워드: Element Slipping

검색결과 20건 처리시간 0.02초

비탄성 반복하중을 받는 철근콘크리트 전단벽의 비선형 유한요소 해석 (Nonlinear Analysis of R/C Shear Walls Subjected to Inelastic Cyclic Loads by finite Element Mettled)

  • 윤현도;오영훈;최창식;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1990년도 가을 학술발표회 논문집
    • /
    • pp.55-60
    • /
    • 1990
  • The objective of this study is to predict the nonlinear behavior of reinforced concrete shear walls, with the reinforcement uniformly distributed, under reversed cyclic loads. This study introduces joint Element Model which formulates the pulling out of rebars, slipping and intrusion of junction planes. The applicability of this study was experimental verfied by specimens SW1, SW2 and SW3 tested by authors, Wall1 by Paulay, SW16 and SW19 by Sheu. In almost specimen, the ratio of analytical to experimental maximum shear stress is within approximately 5%. In case of energy dissipation and maximum drift, the analytical results fully coincide with those of experiment.

  • PDF

수정개별요소법에 의한 불연속 구조체의 파전달 거동 해석 (The Application of the Medified Distinct Element Method to Wave Propagation in Structures with Discontinuous Faces)

  • 김문겸;오금호;김우진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.232-239
    • /
    • 1997
  • The phenomenology of shock loading effects in brittle mass has been of interest to researchers and engineers. The shock loading as blasting causes strong stress waves in the structures. Discontinuous faces due to shock waves interrupt the tensile stress wave propagation and reflect the stress wave propagation. To predict the fracturing behavior of brittle mass, it is required for the numerical method that can analyze the colliding and slipping behavior of discontinuous faces and the wave propagation in the mass, simultaneously In this study, the wave propagation in the brittle materials is analyzed using the modified distinct element method to be able to predict the behavior of discontinuous structures. The behavior of an unsupported bar subjected to loading at the end is analyzed to verify the rigid body motion of a bar and the relative displacement in the bar. The colliding behavior of two bars is analyzed to investigate the propagation of stress waves in the bar. The fracturing behavior of a bar due to impact loading is analyzed to investigate the propagation of stress waves in the bar with and without the discontinuous faces. The applicability of the modified distinct element method to the wave propagation problems is investigated.

  • PDF

복동금형을 이용한 돌기성형공정에 관한 유한요소해석 (FE Analysis on the Serrated Forming Process using Multi-action Pressing Die)

  • 장동환;함경춘;고병두
    • 소성∙가공
    • /
    • 제17권6호
    • /
    • pp.429-435
    • /
    • 2008
  • In this paper, the serrated forming process is analyzed with finite element method. The seal should secure the overlapping portions of ligature, which has teeth for ligature to prevent from slipping each other after clamping. In the simulation, rigid-plastic finite element model has been applied to the serration forming process. Serration or teeth forming characteristics has been analyzed numerically in terms of teeth geometry based on different forming conditions. Analyses are focused to find the influence of different die movements and geometries on the tooth geometry, which is crucial for securing overlapping portions of ligature. Two major process variables are selected, which are the face angle and entry angle of punch, respectively. Extensive investigation has been performed to reveal the influences of different entry and face angles on the geometry of teeth formation in the simulation. Three different face angles of punch have been selected to apply to each simulation of serrated sheet forming process with every case of punch entry angles. Furthermore, tooth geometries predicted from simulation have been applied to the indention process for comparing proper tooth geometries to secure the sealing.

3D FE modeling considering shear connectors representation and number in CBGB

  • Abbu, Muthanna A.;Ekmekyapar, Talha A.;Ozakca, Mustafa A.
    • Steel and Composite Structures
    • /
    • 제17권3호
    • /
    • pp.237-252
    • /
    • 2014
  • The use of composite structures is increasingly present in civil building works. Composite Box Girder Bridges (CBGB), particularly, are study of effect of shear connector's numbers and distribution on the behavior of CBGBs is submitted. A Predicti structures consisting of two materials, both connected by metal devices known as shear connectors. The main functions of these connectors are to allow for the joint behavior of the girder-deck, to restrict longitudinal slipping and uplifting at the element's interface and to take shear forces. This paper presents 3D numerical models of CBGBs to simulate their actual structural behavior, with emphasis on the girder-deck interface. Additionally, a Prediction of several FE models is assessed against the results acquired from a field test. A number of factors are considered, and confirmed through experiments, especially full shear connections, which are obviously essential in composite box girder. A good representation for shear connectors by suitable element type is considered. Numerical predictions of vertical displacements at critical sections fit fairly well with those evaluated experimentally. The agreement between the FE models and the experimental models show that the FE model can aid engineers in design practices of box girder bridges. Preliminary results indicate that number of shear studs can be significantly reduced to facilitate adoption of a new arrangement in modeling CBGBs with full composition. However, a further feasibility study to investigate the practical and economic aspects of such a remedy is recommended, and it may represent partial composition in such modeling.

A study on the seismic behavior of Reinforced Concrete (RC) wall piers strengthened with CFRP sheets: A pushover analysis approach

  • Fatemeh Zahiri;Ali Kheyroddin;Majid Gholhaki
    • Structural Engineering and Mechanics
    • /
    • 제88권5호
    • /
    • pp.419-437
    • /
    • 2023
  • The use of reinforced concrete (RC) shear walls (SW) as an efficient lateral load-carrying system has gained recent attention. However, creating openings in RC shear walls is unavoidable due to architectural requirements. This reduces the walls' strength and stiffness, resulting in the development of wall piers. In this study, the cyclic behavior of RC shear walls with openings, reinforced with carbon fiber reinforced polymer (CFRP) sheets in various patterns, was numerically investigated. Finite element analysis (FEA) using ABAQUS software was employed. Additionally, the retrofitting of sub-standard buildings (5, 10, and 15-story structures) designed based on the old and new versions of the Iranian Code of Practice for Seismic-Resistant Structures was evaluated. Nonlinear static analyses, specifically pushover analyses, were conducted on the structures. The best pattern of CFRP wrapping was determined and utilized for retrofitting the sub-standard structures. Various structural parameters, such as load-carrying capacity, ductility, stress contours, and tension damage contours, were compared to assess the efficiency of the retrofit solution. The results indicated that the load-carrying capacity of the sub-standard structures was lower than that of standard ones by 57%, 69%, and 67% for 5, 10, and 15-story buildings, respectively. However, the retrofit solution utilizing CFRP showed promising results, enhancing the capacity by 10-25%. The retrofitted structures demonstrated increased yield strength, ultimate strength, and ductility through CFRP wrapping and effectively prevented wall slipping.

원, 타원 및 인벌루트 조합된 치형형상을 갖는 로터 개발 (Development of an Automated Design System for Oil Pumps with Multiple Profiles(Circle, Ellipse and Involute))

  • 정성윤;김문생;조해용;김철
    • 한국정밀공학회지
    • /
    • 제26권3호
    • /
    • pp.103-112
    • /
    • 2009
  • A internal lobe pump is suitable for oil hydraulics of machine tools, automotive engines, compressors, constructions and other various applications. In particular, the pump is an essential machine element of an automotive engine to feed lubricant oil. The subject of this paper is the theoretical analysis of internal lobe pump whose the main components are the rotors: usually the outer one is characterized by lobe with elliptical and involute shapes, while the inner rotor profile is determined as conjugate to the other. And the integrated system which is composed of three main modules has been developed through AutoLISP under AutoCAD circumstance. It generates new lobe profile and calculates automatically the flow rate and flow rate irregularity according to the lobe profile generated. Results obtained from the analysis enable the designer and manufacturer of oil pump to be more efficient in this field.

타원의 치형 형상을 갖는 로터 설계 자동화 시스템 개발 (Development of an Automated Design System for Oil Pumps with Ellipse Lobe Profile)

  • 정성윤;한승무;김철
    • 한국정밀공학회지
    • /
    • 제26권1호
    • /
    • pp.120-129
    • /
    • 2009
  • An internal lobe pump is suitable for oil hydraulics of machine tools, automotive engines, compressors, constructions and other various applications. In particular, the pump is an essential machine element of an automotive engine to feed lubricant oil. The subject of this paper is the theoretical analysis of internal lobe pump whose the main components are the rotors: usually the outer one is characterized by lobes with elliptical shape, while the inner rotor profile is determined as conjugate to the other. And the integrated system which is composed of three main modules has been developed through AutoLISP under AutoCAD circumstance. It generates new lobe profile and calculates automatically the flow rate and flow rate irregularity according to the lobe profile generated. Results obtained from the analysis enable the designer and manufacturer of oil pump to be more efficient in this field.

Numerical simulation of external pre-stressed steel-concrete composite beams

  • Moscoso, Alvaro M.;Tamayo, Jorge L.P.;Morsch, Inacio B.
    • Computers and Concrete
    • /
    • 제19권2호
    • /
    • pp.191-201
    • /
    • 2017
  • External pre-stressing is often used in strengthening or retrofitting of steel-concrete composite beams. In this way, a proper numerical model should be able to trace the completely nonlinear response of these structures at service and ultimate loads. A three dimensional finite element model based on shell elements for representing the concrete slab and the steel beam are used in this work. Partial interaction at the slab-beam interface can be taken into account by using special beam-column elements as shear connectors. External pre-stressed tendons are modeled by using one-dimensional catenary elements. Contact elements are included in the analysis to represent the slipping at the tendon-deviator locations. Validation of the numerical model is established by simulating seven pre-stressed steel-concrete composite beams with experimental results. The model predictions agree well with the experimental results in terms of collapse loads, path failures and cracking lengths at negative moment regions due to service loads. Finally, the accuracy of some simplified formulas found in the specialized literature to predict cracking lengths at interior supports at service loading and for the evaluation of ultimate bending moments is also examined in this work.

퍼포본드 FRP-콘크리트 합성보의 휨/전단거동에 관한 외연적 비선형 유한요소해석 연구 (Explicit Nonlinear Finite Element Analysis for Flexural/Shear Behavior of Perfobond FRP-Concrete Composite Beam)

  • 유승운
    • 한국산학기술학회논문지
    • /
    • 제21권11호
    • /
    • pp.771-776
    • /
    • 2020
  • 본 연구에서는 천공된 웨브를 가진 FRP판을 거푸집 및 보강재로 활용한 퍼포본드 FRP-콘크리트 합성보의 휨/전단 거동 특성을 해석적인 방법으로 거동특성을 파악한다. 기존 실험결과와 비교하여 그 유용성을 입증하고 차후 실무에 활용하고자 한다. 본 사례와 같이 비선형성이 매우 큰 경우에는 외연적 방법에 의한 비선형 유한요소해석이 효과적일 것이다. 본 연구에서 채택한 콘크리트손상소성(concrete damage plasticity: CDP)모델은 콘크리트의 비선형적 거동을 적절히 모사할 수 있는 것으로 사료되며, 모델에서 필요한 여러 변수 인자의 결정은 실험결과와 비교하여 연구에서 사용한 값들을 추천하나, 보다 다양한 케이스에 대한 검토 및 조정이 필요할 것이다. 웨브가 천공된 합성보의 퍼포본드의 효과는 초기강성의 확보 측면에서 다소 효과가 있는 것으로 판단되나 정점에서의 경우 단면 손실과 결합력 증진 효과를 적절히 안배해야 할 것으로 사료된다. FRP 판과 콘크리트의 미끄러짐 등의 접촉문제는 초기 강성이 실험결과보다 다소 크게 나타난 이유 중에 하나라 판단되며 정점 이후 콘크리트와 FRP 의 분리문제 등이 실험결과와 다소 차이를 보인 원인으로 생각한다.

클램프에서 예하중의 영향에 관한 연구 (A Study on the Effect of Preloading in Clamp)

  • Han, D.M.;Lee, S.S.;Lee, D.R.
    • 한국정밀공학회지
    • /
    • 제14권8호
    • /
    • pp.29-39
    • /
    • 1997
  • The clamp, as the structure which is used for supporting the pipe in the atomic power plant, is produced with a certain degree of anticlastic curvature in the current manufacturing process. In this study, the structural analysis of the clamp and the pipe was performed using ABAQUS. And the finite element modelling for the analysis was made by an HyperMesh. The contact forces which are transferred between the clamp and the pipe for the external force are changed according to the binding force of bolts and keeps the clamp tightly and protects the slipping between the clamp and the pipe. The clamps with the anticlastic curvature and with the flat curvature are considered in order to invest the anticlastic effect. In this study, another case is suggested. The present case does not have the stiffness ring on the end of the clamp but the suggested case has the ring. For the present case, the results showed that the equivalent stress is higher in the anticlastic curvature case than in the flat curvature case and the equivalent stresses on the pipe are almost the same as the binding force increses. For the suggested case, the result showed that the equivalent stress in the anticlastic curvature case decreases until some binding force and increases as the binding forces increase and is lower in some range than in the flat curvature case. From this study, the clamp with the anticlastic curvature in the suggested method is better than the clamp with the flat curvature and the optimal binding force are given.

  • PDF