Physicochemical properties of Hallabong Tangor(Citrus Kiyomi
Background: This study investigated the anti-obesity effect of the flavonoid rich fraction (FRF) and its constituent, rutin obtained from the leaf of Morus alba L., on the lipid accumulation mechanism in 3T3-L1 adipocyte and C57BL/6 mouse models. Methods and Results: In Oil Red O staining, FRF (1,000 ㎍/㎖) treatments showed inhibition rate of 35.39% in lipid accumulation compared to that in the control. AdipoRedTM assay indicated that the triglyceride content in 3T3-L1 adipocytes treated with FRF (1,000 ㎍/㎖) was reduced to 23.22%, and free glycerol content was increased to 106.04% that of the control. FRF and its major constituent, rutin affected mRNA gene expression. Rutin contributed to the inhibition of Sterol regulatory element binding protein-1c (SREBP-1c) gene expression, and inhibited the transcription factors SREBP-1c, peroxisome proliferator-activated receptor gamma (PPAR-γ), CCAAT/enhancer binding protein α (C/EBPα), fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC). In addition, the effect of FRF administration on obesity development in C57BL/6 mice fed high-fat diet (HFD) was investigated. FRF suppressed weight gain, and reduced liver triglyceride and leptin secretion. FRF exerted potential anti-inflammatory effects by improving insulin resistance and adiponectin levels, and could thus be used to help counteract obesity. The mRNA expressions of PPAR-γ, FAS, ACC, and CPT-1 were determined in liver tissue. Quantitative real-time PCR analysis was also performed to evaluate the expression of IL-1β, IL-6, and TNF-α in epididymal adipose tissue. Compared to the control group, mice fed the HFD showed the up-regulation in PPAR-γ, FAS, IL-6, and TNF-α genes, and down-regulation in CPT1 gene expression. FRF treatement markedly reduced the expression of PPAR-γ, FAS, IL-6, and TNF-α compared to those in HFD control, whereas increased the expression level of CPT1. Conclusions: These results suggest that the FRF and its major active constituent, rutin, can be used as effective anti-obesity agents.
Adhesive bonding is currently widely used in many industrial fields, particularly in the aeronautics sector. Despite its advantages over mechanical joints such as riveting and welding, adhesive bonding is mostly used for secondary structures due to its low peel strength; especially if it is simultaneously exposed to temperature and humidity; and often presence of bonding defects. In fact, during joint preparation, several types of defects can be introduced into the adhesive layer such as air bubbles, cavities, or cracks, which induce stress concentrations potentially leading to premature failure. Indeed, the presence of defects in the adhesive joint has a significant effect on adhesive stresses, which emphasizes the need for a good surface treatment. The research in this field is aimed at minimizing the stresses in the adhesive joint at its free edges by geometric modifications of the ovelapping part and/or by changing the nature of the substrates. In this study, the finite element method is used to describe the mechanical behavior of bonded joints. Thus, a three-dimensional model is made to analyze the effect of defects in the adhesive joint at areas of high stress concentrations. The analysis consists of estimating the different stresses in an adhesive joint between two 2024-T3 aluminum plates. Two types of single lap joints(SLJ) were analyzed: a standard SLJ and another modified by removing 0.2 mm of material from the thickness of one plate along the overlap length, taking into account several factors such as the applied load, shape, size and position of the defect. The obtained results clearly show that the presence of a bonding defect significantly affects stresses in the adhesive joint, which become important if the joint is subjected to a higher applied load. On the other hand, the geometric modification made to the plate considerably reduces the various stresses in the adhesive joint even in the presence of a bonding defect.
This study investigated the effect of bearing aging on the seismic response of a three-span continuous concrete girder bridge with pot bearings installed. The pot bearings were modeled as elastic springs in the longitudinal, transverse, and vertical directions of the bridge to reflect the stiffness of fixed and movable supports. The effect of bearing aging on the seismic response of the bridge was examined by considering two factors: a decrease in the horizontal stiffness of the fixed bearings and an increase in the horizontal stiffness of the movable bearings. The finite element model of the three-span continuous girder bridge was validated by comparing its numerical natural frequencies with the designed natural frequencies. Using artificial ground motions that conform to the design response spectrum specified by the KDS bridge seismic design code, the seismic responses of the bridge's girders and bearings were calculated, considering the bearing stiffness variation due to aging. The results of a numerical analysis revealed that a decrease in the horizontal stiffness of the fixed bearings led to an increase in the absolute maximum relative displacement of the bearings during an earthquake. This increases the risk of the mortar block that supports the bearing cracking and the anchor bolt breaking. However, an increase in the horizontal stiffness of the movable bearings due to aging decreased the absolute maximum shear on the fixed bearings. Despite the shear reduction in the fixed bearings, the aging of the pot bearings change could cause additional tensile bending stress in the girder section above the free bearings, which could lead to unexpected structural damage to the continuous bridge during an earthquake.
Roy Huddle, having invented the coated particle in Harwell 1957, stated in the early 1970s that we know now everything about particles and coatings and should be going over to deal with other problems. This was on the occasion of the Dragon fuel performance information meeting London 1973: How wrong a genius be! It took until 1978 that really good particles were made in Germany, then during the Japanese HTTR production in the 1990s and finally the Chinese 2000-2001 campaign for HTR-10. Here, we present a review of history and present status. Today, good fuel is measured by different standards from the seventies: where
In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.
The purpose of this study was to investigate the characteristics of Chinese seowons and to obtain data based on the characteristics of waterscapes unique to Korean seowons. The conclusion of this study from the results of investigation and analysis of the location, water system, and design characteristics of 10 representative traditional seowons in China including Yuelu Seowon(嶽麓書院) conducted based on literature research and field observation is as follows. The water system of Chinese seowons is dualized into an inner and an outer water system, and in general, two and a maximum of three water bodies are superimposed on the outside. The locations of seowons are classified into five types: Four double-sided round water type sites, three converted face water type sites, one three-sided round water type site, a four-sided round water type, and a waterproofing type(依山傍水型). Therefore, compared to the typical Korean seowon facing water in the front and a mountain in the back(背山面水型), the Chinese seowons showed a highly hydrophilic property. The water shapes of the external water system were meandering(46.0%), mooring(36.0%), and broad and irregular(9.0%). In addition, water conception(水態) were streams(31.8%), rivers(27.3%), springs(13.6%), falls(9.1%), lakes(4.5%) and ponds(4.5%), in that order. As for waterscapes of the water system inside the seowon, there were seven in Akrok Seowon and four in Mansong Seowon, indicating a comparatively higher number of waterscapes. Since the 27 detailed waterscapes in 10 seowons that were the subject of the study were classified into six types including ponds and half-moon ponds, they appeared to be more diverse than the Korean seowon. It is noteworthy that in the interior waterscape of the traditional Chinese seowon, the ritualistic order, where at least one half-moon pond or square pond(方池) was arranged, is well displayed. In particular, the half-moon pond(伴池), which is difficult to find in Korean seowon, was found to be a representative waterscape element, accounting for 42.8%. If the square pond of Nanxi Seowon based on Zhu Xi's poem 「Gwanseoyugam(觀書有感)」 is also treated as a square-shaped half-moon pond, the proportion of half-moon ponds in the waterscape will be as high as 50%. The pond shapes consisted of 28% square, 24% each for free curve and round shape, 20% for semi-moon shape, and 3.8% for mountain stream type. This seems to differ greatly from the square-shaped Korean seowon. On the other hand, there were a total of 10 types of structures related to the waterscape inside the Chinese seowon: 11(26.8%) pavilion and bridge sites, five gate room sites(牌坊: 16.5%), four gate and tower sites(樓, 1.4%), two Jae sites(齋, 6.2%), and one site each(3.1%) of Heon(軒), Sa(祠), Dae(臺), and Gak(閣). In particular, the pavilions inside seowon were classified into three types: landscape pavilion(景觀亭 27.2%), tombstone pavilion(碑亭, 18.2%), and banquet pavilion(宴集亭, 54.5%). In general, it was confirmed that the half-moon pond with a pedestal bridge, and the pavilion were the major components with a high degree of connection that dominate the waterscape inside the Chinese seowon.
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70