• 제목/요약/키워드: Electrostatic printing system

검색결과 13건 처리시간 0.03초

Pattern Characteristic by Electrostatic Field Induced Drop-On-Demand Ink-jet Printing

  • Choi, J.Y.;Kim, Y.J.;Son, S.U.;Kim, Y.M.;Lee, S.H.;Byun, D.Y.;Ko, H.S.
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.451-454
    • /
    • 2007
  • This paper presents the pattern characteristic using the electrostatic drop-on-demand ink-jet printing system. In order to achieve the pattern characteristic of electrostatic inkjet printing, the capillary inkjet head system is fabricated using capillary tube, Pt wire and electrode, and is packaged by acrylic board for the accurate alignment between wire and electrode-hole. The applied DC voltage of 1.4 $\sim$ 2.0 kV used for the observation of electrostatic droplet ejection. Electrostatic droplet ejection is directly observed using a high-speed camera. For investigated pattern characteristic, conductive inkjet silver ink used. The higher voltage has a good condition which has micro dripping mode. Also, the droplet size decreases with increasing the supplied DC voltage. This paper shows the pattern which is formed by about 300um. Also, capillary inkjet head system will be applied industrial area comparing conventional electrostatic inkjet head system.

  • PDF

정전기장 유도된 잉크젯 프린터 헤드를 이용한 탄소나노튜브 잉크의 Drop-On-Demand 특성 연구 (The Analysis of Drop-On-Demand Characteristic of Electrostatic Field Induced Inkjet Head System with Carbon Nano Tube (CNT) Ink)

  • 최재용;김용재;손상욱;김영민;변도영;고한서;이석한
    • 전기학회논문지
    • /
    • 제56권8호
    • /
    • pp.1445-1449
    • /
    • 2007
  • This paper presents the DOD (Drop-On-Demand) characteristic using the electrostatic field induced inkjet printing system. In order to achieve the DOD characteristic of electrostatic field induced inkjet printing, applied the bias voltage of 1.4 kV and the pulse voltage of $2.0\;kV\;{\sim}\;2.7\;kV$ using high voltage pulse generator. Electrostatic field induced droplet ejection is directly observed using a high-speed camera and for investigated DOD characteristic, CNT ink used. The electrostatic field induced inkjet head system has DOD characteristic using pulse generator which can be applied pulse voltage. The bias voltage has a good condition which form meniscus and has micro dripping mode for small size micro droplet. Also, the droplet size decreases with increasing the applied pulse voltage. This paper shows DOD characteristic at electrostatic field induced inkjet head system, Therefore. electrostatic DOD inkjet head system will be applied industrial area comparing conventional electrostatic inkjet head system.

EHD 원리를 이용한 정전기장 유도 잉크젯 프린터 헤드의 마이크로 Drop-on-Demand 제팅 성능 연구

  • 최재용;김용재;손상욱;안기철;이석한;고한서;;변도영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1947-1950
    • /
    • 2008
  • Printing technology is a very useful method in the several process of industrial fabrication due to noncontact and fast pattern generation. To make micro pattern, we investigate the electrostatic induced inkjet printer head for micro droplet generation and drop-on-demand jetting. In order to achieve the drop-on-demand micro droplet ejection by the electrostatic induced inkjet printer head, the pulsed DC voltage is supplied. In order to find optimal pulse conditions, we tested jetting performance for various bias and pulse voltages for drop-on-demand ejection. In this result, we have successful drop-on-demand operation and micro patterning. Therefore, our novel electrostatic induced inkjet head printing system will be applied industrial area comparing conventional printing technology.

  • PDF

전기수력학 프린팅 시스템을 이용한 고점도 형광체의 정량 토출 연구 (A Study of High Viscosity Phosphor Dispensing for an Electrostatic Printing System)

  • 김수완;양영진;김현범;당현우;양봉수;최경현
    • 소성∙가공
    • /
    • 제24권2호
    • /
    • pp.83-88
    • /
    • 2015
  • For chromaticity correction, it is necessary to dispense high viscosity phosphor slurry since it greatly affects the performance of white LEDs. However, it is quite difficult to dispense high viscosity fluorescent materials. In the current study, micro-discharge electrostatic printing has been used for dispensing various high viscosity phosphor slurries. We have achieved dispersions of up to 50 µg using drop on demand (DOD) discharge experiments. The experiments were conducted with different combinations of process variables such as applied voltage, pneumatic pressure, and frequency.

인쇄전자 기술을 이용한 유기 태양전지 기술 개발 (Development of the Organic Solar Cell Technology using Printed Electronics)

  • 김정수;유종수;윤성만;조정대;김동수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.113.1-113.1
    • /
    • 2011
  • PEMS (printed electro-mechanical system) is fabricated by means of various printing technologies. Passive and active compo-nents in 2D or 3D such as conducting lines, resistors, capacitors, inductors and TFT(Thin Film Transistor), which are printed withfunctional materials, can be classified in this category. And the issue of PEMS is applied to a R2R process in the manu-facturing process. In many electro-devices, the vacuum process is used as the manufacturing process. However, the vacuum process has a problem, it is difficult to apply to a continuous process such as a R2R(roll to roll) printing process. In this paper, we propose an ESD (electro static deposition) printing process has been used to apply an organic solar cell of thin film forming. ESD is a method of liquid atomization by electrical forces, an electrostatic atomizer sprays micro-drops from the solution injected into the capillary with electrostatic force generated by electric potential of about several tens kV. ESD method is usable in the thin film coating process of organic materials and continuous process as a R2R manufacturing process. Therefore, we experiment the thin films forming of PEDOT:PSS layer and active layer which consist of the P3HT:PCBM. The organic solar cell based on a P3HT/PCBM active layer and a PEDOT:PSS electron blocking layer prepared from ESD method shows solar-to-electrical conversion efficiency of 1.42% at AM 1.5G 1sun light illumination, while 1.86% efficiency is observed when the ESD deposition of P3HT/PCBM is performed on a spin-coated PEDOT:PSS layer.

  • PDF

Graft Polymer를 이용한 수계 세라믹 잉크의 합성 및 프린팅 특성평가 (Synthesis and Printability of Aqueous Ceramic Ink with Graft Polymer)

  • 이지현;황해진;김진호;황광택;한규성
    • 한국재료학회지
    • /
    • 제29권10호
    • /
    • pp.639-646
    • /
    • 2019
  • Ink-jet printing is a manufacturing process technology that directly prints a digitalized design pattern onto a substrate using a fine ink jetting system. In this study, environmentally friendly yellow aqueous ceramic ink is synthesized by mixture of distilled water, yellow ceramic pigment and additives for ink-jet printing. The graft polymer, which combines electrostatic repulsion and steric hindrance mechanism, is used as a surfactant for dispersion stability of aqueous ceramic ink. Synthesized ceramic ink with graft polymer surfactant shows better dispersion stability than did ceramic ink with PAA surfactant; synthesized ink also shows desirable ink-jet printability with the formation of a single ink droplet during printability test. Finally, ceramic ink printed on glass substrate and ceramic ink with graft polymer surfactant shows a high contact angle without surface treatment on glass substrate. Consequently, it is confirmed that the ceramic ink with graft polymer surfactant can achieve high printing resolution without additional surface treatment process.