• Title/Summary/Keyword: Electrostatic capacity

Search Result 51, Processing Time 0.024 seconds

A Study on Properties of C-V of Silicone Rubber due to Electrode Materials (전극재에 의한 실리콘 고무의 C-V 특성에 관한 연구)

  • Lee, Sung Ill
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.11
    • /
    • pp.721-726
    • /
    • 2015
  • In this study, the properties of C-V degradation for thermal conductivity silicone rubber sample which is attached by copper-copper, copper-aluminum, aluminum-aluminum on upper-side and under-side has been measured at temperature of $80^{\circ}C{\sim}140^{\circ}C$. The results of this study are as follows. In case the frequency is increased, it found that the electrostatic capacity increased with increasing temperature to $80^{\circ}C$, $110^{\circ}C$, $140^{\circ}C$ regardless of kind of electrode. It found that the electrostatic capacity increased with becoming high temperature range of frequency regardless of kind of electrode. This result is considered to be caused by thermal absorption on the thermal conductivity silicone rubber sample. It found that the electrostatic capacity decreased with increasing temperature and frequency. This result is considered to be caused by molecular motion of C-F radical or OH radical.

Electric Properties of Thermal Conductive Silicone Rubber due to Thermally Degradation (열 열화한 열전도성 실리콘 고무의 전기특성)

  • Lee, Sung Ill
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.835-840
    • /
    • 2016
  • In this study, the electrostatic capacity and dielectric loss tangent for $20{\mu}m$ thick thermal conductivity silicone rubber which is heated at 80 degrees for 8 hours has been measured at temperature of $30^{\circ}C{\sim}170^{\circ}C$, frequency of 0.1~1 MHz. The results of degradation evaluation by this study are as follows. In low frequency, it found that the electrostatic capacity decreased with increasing temperature. On the other hand, it confirmed that the range of the electrostatic capacity narrowed with increasing frequency. It confirmed that there are the carboxylic acid structure and C-O bonding at range of wave number 1,000cm-1 to 1,300cm-1.

A Study on Properties of C-V Degradation due to Heating in Teflon (테프론의 가열에 의한 C-V 열화 특성에 관한 연구)

  • Lee, Sung Ill
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.11
    • /
    • pp.730-735
    • /
    • 2014
  • In this study, the temperature characteristics of electrostatic capacity and dielectric loss for the sample of Teflon film which is degradated at the $120^{\circ}C{\sim}200^{\circ}C$ temperature range in the oven for 10 hours has been measured in through the applied frequency range of 0.1 kHz~4,800 kHz at temperature of $50^{\circ}C$, $90^{\circ}C$, $130^{\circ}C$, $170^{\circ}C$. Also, in the same conditions, the frequency characteristics of electrostatic capacity and dielectric loss for the sample of Teflon film has been measured in through the applied temperature range of $30^{\circ}C{\sim}70^{\circ}C$ on setting frequency of 0.1 kHz, 1 kHz, 10 kHz, 100 kHz. The results of this study are as follows. When the frequency range of 0.1 kHz~4,800 kHz applied to the sample of Teflon film, the electrostatic capacity has been measured at the temperature of $50^{\circ}C$, $90^{\circ}C$, $130^{\circ}C$, $170^{\circ}C$. Through this measurement, it found that the electrostatic capacity decreased with increasing temperature. Regarding this result, may be it is because the electromagnetic coupling is degraded by thermal degradation. When the sample of Teflon film heated at $280^{\circ}C$ for 10 hours in oven, the dielectric loss has changed from unstable status to stabilizing status with increasing the degradation temperature in the $120^{\circ}C$, $160^{\circ}C$, $200^{\circ}C$ range. In this measurement, the two spectrums of dielectric loss appeared. It considers that this spectrum of dielectric loss appeared in 300 Hz is caused by the molecular motion of the C-F or OH group. Through this study, It found that the electrostatic capacity decreased with increasing frequency and temperature, and there is no change in dielectric loss, although the frequency increases.

A Study on Insulation Degradation Properties of Thermal Conductive Silicone Rubber due to Temperature Transition (온도 변화에 의한 열전도성 실리콘 고무의 절연 열화 특성)

  • Lee, Sung Ill
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.7
    • /
    • pp.456-461
    • /
    • 2015
  • In this study, the frequency properties of electrostatic capacity and dielectric loss for the samples with different types of filler has been measured in through the applied frequency range of 7 kHz ~3,000 kHz at temperature of $80^{\circ}C$, $110^{\circ}C$, $140^{\circ}C$, $170^{\circ}C$. The results of this study are as follows. When the sample is degradated at the temperature of $80^{\circ}C$, $110^{\circ}C$, $140^{\circ}C$, $170^{\circ}C$ and the frequency range of 7 kHz ~3,000 kHz is applied, It found that the electrostatic capacity of the sample with Polyimide film is larger than the sample with Grass fiber. It found that the dielectric loss for the sample with Polyimide film is larger than the sample with Grass fiber with increasing frequency and temperature in the $80^{\circ}C$, $110^{\circ}C$, $140^{\circ}C$, $170^{\circ}C$ range. Also, the dielectric loss decreased with increasing frequency. In case of the sample with Polyimide film, It found that the electrostatic capacity decreased with increasing temperature, and the dielectric loss gradually decreased with increasing frequency.

A Study on Electrical Degradation Properties of Epoxy Resin due to Moisture Absorption (흡습에 의한 에폭시 수지의 전기적 열화 특성에 관한 연구)

  • Lee, Sung Ill
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.9
    • /
    • pp.656-661
    • /
    • 2013
  • In this study, the moisture content, charge discharge current, electrostatic capacity and dielectric loss tangent are measured for the specimen of bisphenol type epoxy resin which is mixed with squared amorphous silica filler and dipped in hot water of $50^{\circ}C$ for 169 days. The results of this study are listed below. The longer of deposition day, the charge and discharge current was increased. It is considered that the reason is because there was water attack through the squared silica surface. The longer of deposition day, the absorption rate of all specimens was increased. It found that the absorption rate reached saturated state after 100 days. The higher frequency and the longer of deposition day, the $tan{\delta}$ was decreased. Also, It found that the $tan{\delta}$ and electrostatic capacity of the specimen which is mixed with squared filler are greater.

A Study on the Antistatic characteristics of Antistatic Garments for the Prevention of Static Electricity Hazards (정전기 재해예방을 위한 제전복의 제전특성에 관한 연구)

  • 정재희
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.1
    • /
    • pp.57-66
    • /
    • 1990
  • The purpose of this study is to investigate electrostatic charge condition and possibility of electrostatic hazards in case of putting on synthetic smocks and antistatic garments for the purpose of prevention of electrostatic hazards due to a human body electrical charge. It is shown in case of a synthetic smocks, electrostatic voltage by friction is about 2,900 (V), half life period is 12 second, and electrostatic charge is 1.4―1.8 ($\mu$ C). When putting on a synthetic smocks, electrostatic voltage is 2,500―2,800(V). When putting on a jumper of chemical fiber, electrostatic voltage is 8,000(V) . It is, therfore, possible to cause a electrostatic hazards. It is also shown in case of a antistatic garments, electrostatic voltage by friction is 87(V) ―280(V) (washing 90 times), half life period is 3―5 second, and electrostatic charge is 0.24―0.28($\mu$ C) which is much lower than 0.6($\mu$ C) limitation of fire and explosion occurance. When putting on a antistatic garments, electrostatic voltage is 10(V) ―125(V). In conclusion, it is shown when putting on a antistatic garments it is possible to prevent a electrostatic hazards such as fire or explosion due to human body, to prevent a destruction of semiconductor elements and capacity decline, and to prevent a misoperation of automation facilities and semiconductor electric and electronic products.

  • PDF

Modeling of Acid/Base Buffer Capacity of soils (토양의 산/염기 완충능의 모델링)

  • 김건하
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.3
    • /
    • pp.3-10
    • /
    • 1998
  • Acid/Base buffer capacity of soil is very important in prediction of contaminant transport for its direct impact on pH change of the system composed of soil-contaminant-water, In this research, diffuse double layer theory as well as two layer electrostatic adsorption model are applied to develop a theoretical model of buffer capacity of soil. Model application procedures are presented as well. Buffer capacity of Georgia kaolinite and Milwhite kaolinite was measured by acid-base titration. Model prediction and experimental results are compared.

  • PDF

Pilot-Scale Testing of a Vibrating Electrostatic Separator for Fly Ash Decarbonization

  • Yoon, Roe-Hoan;Eric Yan;Han, Oh-Hyung;Park, Byung-Wook
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.644-649
    • /
    • 2001
  • A new electrostatic separator has been developed for the removal of unburned carbon from fly ash. In this separator, a flowing film of fly ash is created on the surface of a vibrating electrode. Conducting particles such as unburned carbon acquire electrostatic charges and jump out of the flowing film so that they can be removed from the non-conducting fly ash particles moving forward. The new separator has been tested successfully using a pilot-scale test unit at 0.5 tons/hr capacity. Based on the successful test results, a larger unit is being constructed at the present time.

  • PDF

Phenomenon of Power Interference and Screening Factor (전력유도 현상과 차폐계수)

  • 황종선;김영민;이경욱;김재준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.621-624
    • /
    • 2001
  • A metal sheath provides a cable with electrostatic screening and a degree of magnetic screening. The presence of a screen on a cable also reduces the induction arising from the high-frequency components of transients caused by power-line switching and also induced transients from lightning strokes; such transient induced voltages are of increasing importance with the increasing use of miniaturized telecommunication equipment with very small thermal capacity. This paper describes electrostatic induction and electromagnetic induction caused by power interference. Also screening factors are proposed.

  • PDF

Predicted Optimum Efficiency due to Changes in the Design Parameters of the Small Electrostatic Precipitator (설계인자 변화에 따른 소형 전기집진장치의 최적효율 예측)

  • Suh, Jeong-Min;Yi, Pyong-In;Jung, Moon-Sub;Park, Jeong-Ho;Lim, Woo-Taik;Park, Chool-Jae;Choi, Kum-Chan
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1187-1197
    • /
    • 2013
  • The result of a small electrostatic precipitator which is in order to decrease indoor air pollution for optimal efficiency was shown as follows. Although the closer distance between the discharge electrode and dust collecting electrode shows the better throughput efficiency by forming strong electrostatic Field, it does not have profound impact in case of optimal dust collecting area. G.P(gas passage) which is the distance from dust collecting electrode to dust collecting electrode is a crucial factor to decide dust collecting efficiency. The narrower distance of G.P shows the better throughput efficiency whereas it decreases when the distance is too narrow since sparks ensue by increasing the capacity of electrostatic charging system 5 mm regards as optimal efficiency in this experiment. Although the higher voltage shows the higher dust collecting efficiency overall, the experiment was not able to keep performing since the sparks which decrease dust collecting efficiency ensue over 40 kV. The efficient and safe voltage state is considered 3.6 kV in this experiment. The most crucial factor for dust collecting efficiency of an electrostatic precipitator which is in order to decrease indoor air pollution is applied voltage. In addition, optimal raw gas flow rate(2.4 m/sec) is more important factor than the excessive increase of dust collecting area.