• 제목/요약/키워드: Electrostatic Inkjet

검색결과 24건 처리시간 0.025초

Development of an Electrostatic Drop-On-Demand inkjet Device for Display Fabrication Process

  • Son, Sang-Uk;Choi, Jae-Yong;Lee, Suk-Han;Kim, Yong-Jae;Ko, Han-Seo;Kim, Hyun-Cheol;Byun, Do-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.655-659
    • /
    • 2006
  • This paper presents a novel electrostatic drop-on-demand inkjet device featured by a MEMS fabricated pole-type and hole-type nozzle with tube shaped orifice and investigates the feasibility of applying the inkjet device to display fabrication process. The electric voltage signal applied to the ring shaped upper electrode plate, against the hole-shaped ground or pole-shaped ground, referred here pole-type and hole-type nozzle respectively, allows ejection of small droplet to take place: That is, a tiny droplet is taken away from the peak of the mountain shaped liquid meniscus formed at the nozzle orifice. It is verified experimentally that the use of the pole type nozzle allows a stable and sustainable micro-dripping mode of droplet ejection for a wider range of applied voltages and of liquid viscosities. This demonstrates a feasibility of electrostatic drop-on-demand inkjet device as a disruptive alternative to conventional print heads such as thermal bubble or piezoelectric inkjet heads.

  • PDF

산업용 잉크젯 플로터의 정전기 해석 및 차폐 (Electrostatic Analysis and Protection of the Industrial Type Inkjet Plotter)

  • 최근수;백수현
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권3호
    • /
    • pp.159-167
    • /
    • 2006
  • According to industrial development, all fields using chemical instrument and material are generated an electrostatics. Electrostatic problems were very important part to all these components, moving system, printer, clothe machines etc. This paper was represented an analysis of electrostatic electrification by FEM (finite element method) of industrial type Inkjet plotter. Here electrostatics distribution analysis is accomplished by Maxwell-2D. We are showed an electrostatics generation source by rubbing and meager profits of electric charge. It know electronic values with each system position by experiment. These are decreased through earth and electricity shielding. Therefore this paper is proved by the simulation and experiment result.

정전기력 방식의 Drop-on-Demand 토출을 위한 MEMS 잉크젯헤드 제작 (Fabrication of MEMS Inkjet Head for Drop-on-Demand Ejection of Electrostatic Force Method)

  • 손상욱;김영민;최재용;고한서;김용재;변도영;이석한
    • 전기학회논문지
    • /
    • 제56권8호
    • /
    • pp.1441-1444
    • /
    • 2007
  • This paper presents a novel electrostatic drop-an-demand ejector with a conductive pole inside nozzle. The MEMS fabricated pole-type nozzle shows a significant improvement in the performance and reliability of forming meniscus and generating a micro dripping mode of droplet out of the meniscus. It is verified experimentally that the use of the pole-type nozzle. The liquid is used D20+SDS+SWNT (5 %wt). The gap between upper electrode and nozzle is about 600 um. Electrostatic drop-an-demand ejection is observed when a DC voltage of 1.5 kV is applied between the control electrode and ground electrode. Droplet diameter is $100{\mu}m$.

정전기력 잉크젯 프린팅을 이용한 마이크로 패터닝에 관한 연구 (A Study for Micro-patterning using an Electrostatic Inkjet)

  • 김준우;최경현;김동수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1103-1106
    • /
    • 2008
  • For the current display process, the innovative micro pattern fabrication process using semiconductor process should be developed, which requires the expensive equipment, the limited process environment and the expensive optic-sensitive material. The effort of process innovation during past several years ends up the limit of cost reduction. The existing ink jet technologies such as a thermal bubble ink jet printing and a piezo ink jet printing are required to shorten the nozzle diameter in order to apply to the micro pattern fabrication. In this paper, as one way to cope these problems the micro pattern equipment based on the electrostatic ink jet has been developed and carried out some experiments.

  • PDF

대형 잉크젯 플로터의 워치별 정전기 해석 및 방지 (Electrostatics Analysis and Prevention according to each position of a Large Type Inkjet Plotter)

  • 윤신용;최근수;조영래;백수현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.116-119
    • /
    • 2004
  • According to industrial development, all fields using chemical instrument and material are generated an electrostatics. This paper is represented the electrostatics distribution analysis of industrial type Inkjet plotter. In order to such experiment, an electrostatics for each portions of plotter(OJ-62) are measured by electrostatic measurement. Based on these, the big large position of electrostatics was analyzed by finite element method(Maxwell-2D), Here it is showed an electrostatic inducement and electric charge theory required.

  • PDF

메니스커스 제어를 위한 정전기력 헤드용 공압 잉크공급장치 개발 (Development of Pneumatic Ink Supply System for Electrostatic head on Meniscus control)

  • 양영진;고정범;당현우;김형찬;최경현;조경호
    • 한국정밀공학회지
    • /
    • 제29권4호
    • /
    • pp.455-460
    • /
    • 2012
  • The Electrostatic Inkjet system has many applications in cost and time effective manufacturing of printed electronics like RFIDs, OLEDs and flexible displays etc. This paper presents pneumatic ink supply system for an electrohydrodynamic deposition (EHD) setup for the precise pressure control to produce a small amount of discharge at the end of the capillary. The meniscus shape depends upon the applied pneumatic pressure to the ink supply system. Furthermore, this paper also compares meniscus shapes at different applied pneumatic pressures. It is concluded that patterning of constant line-width can be achieved better by controlling the meniscus shape using this technique.