• 제목/요약/키워드: Electrophysiological

검색결과 324건 처리시간 0.026초

Block of hERG $K^+$ Channel by Classic Histamine $H_1$ Receptor Antagonist Chlorpheniramine

  • Hong, Hee-Kyung;Jo, Su-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권3호
    • /
    • pp.215-220
    • /
    • 2009
  • Chlorpheniramine is a potent first-generation histamine $H_1$ receptor antagonist that can increase action potential duration and induce QT prolongation in several animal models. Since block of cardiac human ether-a-go-go-related gene (hERG) channels is one of leading causes of acquired long QT syndrome, we investigated the acute effects of chlorpheniramine on hERG channels to determine the electrophysiological basis for its proarrhythmic potential. We examined the effects of chlorpheniramine on the hERG channels expressed in Xenopus oocytes using two-microelectrode voltage-clamp techniques. Chlorpheniramine induced a concentration-dependent decrease of the current amplitude at the end of the voltage steps and hERG tail currents. The $IC_{50}$ of chlorpheniramine-dependent hERG block in Xenopus oocytes decreased progressively relative to the degree of depolarization. Chlorpheniramine affected the channels in the activated and inactivated states but not in the closed states. The S6 domain mutations Y652A and F656A partially attenuated (Y652A) or abolished (F656A) the hERG current block. These results suggest that the $H_1$ antihistamine, chlorpheniramine is a blocker of the hERG channels, providing a molecular mechanism for the drug-induced arrhythmogenic side effects.

The Gradient Model of the Rabbit Sinoatrial Node

  • Dobrzynski, H.;Lei, M.;Jones, S.A.;Lancaster, M.K.;Boyett, M.R.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제6권4호
    • /
    • pp.173-181
    • /
    • 2002
  • The sinoatrial (SA) node is a complex and inhomogeneous tissue in terms of cell morphology and electrical activity. There are two models of the cellular organisation of the sinoatrial node: the gradient and mosaic models. According to the gradient model there is a gradual transition in morphology and electrical properties of SA node cells from the centre to the periphery of the SA node. In the mosaic model, there is a variable mix of atrial and sinoatrial node cells from the centre to the periphery. This review focuses on the cellular organisation of the rabbit sinoatrial node in terms of the expression of connexin (Cx40, Cx43 and Cx45), L-type $Ca^{2+}$ channel and $Na^+-Ca^{2+}$ exchanger proteins. These immunocytochemical data, together with morphological and electrophysiological data, obtained from the intact sinoatrial node and isolated sinoatrial node cells support the gradient model of the cellular organisation of the SA node. The complex organisation of the sinoatrial node is important for the normal functioning of the sinoatrial node: (i) it allows the sinoatrial node to drive the surrounding hyperpolarized atrial muscle without being suppressed by it; (ii) it helps the pacemaker activity of the sinoatrial node continue under a wide range of physiological and pathophysiological conditions; (iii) it helps protect the sinoatrial node from reentrant arrhythmias.

Presynatic Expression of HCN Channel Subunits in Cerebellar Basket Cells

  • Yi, Jee-Hyun;Park, Kyung-Joon;Kang, Shin-Jung;Shin, Ki-Soon
    • Animal cells and systems
    • /
    • 제11권2호
    • /
    • pp.199-204
    • /
    • 2007
  • HCN (hyperpolarization-activated cyclic nucleotide-gated) channels, whose gene family consists of four subunits (HCN1-4), mediate depolarizing cation currents and contribute to controlling neuronal excitability. In the present study, immunohistochemical and electrophysiological approaches were used to elucidate the role of HCN channels in the cerebellum. Immunohistochemical labeling for HCN1 and HCN2 channels revealed localized expression of both channels at pinceau, the specialized structure of presynaptic axon terminals of basket cells. To determine the functional role of the presynaptic HCN channels, spontaneous inhibitory postsynaptic currents (IPSCs) were recorded from Purkinje cells, the main synaptic targets of basket cells in the cerebellum. While activation of HCN channels by 8-bromo-cAMP increased amplitude of spontaneous IPSCs, blockade of the activated HCN channels by subsequent ZD7288 application reduced the amplitude of spontaneous IPSCs to the level far below the control. Our results imply that modulation of HCN1 and HCN2 channels in presynaptic terminals of basket cells regulates neurotransmitter release, thereby controlling the excitability of Purkinje cells.

Electrode Characteristics of Non-contact Electrocardiographic Measurement

  • Mathias, Dakurah Naangmenkpeong;Kim, Sung-Il;Park, Jae-Soon;Joung, Yeun-Ho;Choi, Won Seok
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권1호
    • /
    • pp.42-45
    • /
    • 2015
  • The ability to take electrocardiographic measurements while performing our daily activities has become the people-choice for modern age vital sign sensing. Currently, wet and dry ECG electrodes are known to pose threats like inflammations, allergic reactions, and metal poisoning due to their direct skin interaction. Therefore, the main goal in this work is to implement a very small ECG sensor system with a capacitive coupling, which is able to detect electrical signals of heart at a distance without the conductive gel. The aim of this paper is to design, implement, and characterize the contactless ECG electrodes. Under a careful consideration of factors that affect a capacitive electrode functional integrity, several different sizes of ECG electrodes were designed and tested with a pilot ECG device. A very small cotton-insulated copper tape electrode ($2.324cm^2$) was finally attained that could detect and measure bioelectric signal at about 500 um of distance from the subject's chest.

Autoimmune encephalitis and epilepsy: evolving definition and clinical spectrum

  • Seo, Joo Hee;Lee, Yun-Jin;Lee, Ki Hyeong;Gireesh, Elakkat;Skinner, Holly;Westerveld, Michael
    • Clinical and Experimental Pediatrics
    • /
    • 제63권8호
    • /
    • pp.291-300
    • /
    • 2020
  • Advances in autoimmune encephalitis studies in the past 10 years have led to the identification of new syndromes and biomarkers that have transformed the diagnostic approach to the disorder. The disorder or syndrome has been linked to a wide variety of pathologic processes associated with the neuron-specific autoantibodies targeting intracellular and plasma membrane antigens. However, current criteria for autoimmune encephalitis are quite dependent on antibody testing and responses to immunotherapy, which might delay the diagnosis. This form of encephalitis can involve the multifaceted presentation of seizures and unexpected behavioral changes. The spectrum of neuropsychiatric symptoms in children is less definitive than that in adults, and the incorporation of clinical, immunological, electrophysiological, and neuroradiological results is critical to the diagnostic approach. In this review, we document the clinical and immunologic characteristics of autoimmune encephalitis known to date, with the goal of helping clinicians in differential diagnosis and to provide prompt and effective treatment.

Effects of the Photic Stimulation on Electroencephalogram in Pediatric Epilepsy Patients

  • Yoon, Joong Soo;Choi, Hyun Ju
    • 대한의생명과학회지
    • /
    • 제18권4호
    • /
    • pp.428-434
    • /
    • 2012
  • Epilepsy is a chronic neurological disease showing a symptom of repeated seizures without any other physical disorders. Among the diagnostic examination for epilepsy, the electroencephalogram (EEG) has been known as an important test. This study aimed to investigate the EEG with photic stimulation in the pediatric epilepsy patients. They underwent digital sleep and waking EEGs or waking EEGs with photic stimulation. Epilepsy type, seizure history, and season of occurring seizure were analyzed. Epilepsy patients showed more response during the period of photic-on and eye close at the frequency of 10~20 Hz during the EEG activation procedure. Photoparoxysmal response (PPR) was shown in 206 patients out of total 1,551 epilepsy patients. PPR was appeared more frequently during summer and winter seasons, and especially in the patients who had a history of seizure. During the PPR, EEG pattern showed spike (77.18%), theta (9.71%), and spike + theta (13.11%). On the other hand, beta and theta waves were not significantly changed by photic stimulation. However, alpha wave was decreased and delta wave was increased by photic stimulation (P<0.05). These changes may be due to temporarily altered electrophysiological function of the epileptic patient's brain by the photic stimulation. There was no difference in the EEG pattern between the left and right side in the brain. In conclusion, condition of photic-on with closed eyes and frequency of 10~20 Hz during the procedure of EEG activation could be appropriate for obtaining a definite photoparoxysmal response in the electroencephalogram of the pediatric epilepsy patients.

Functional Connectivity Map of Retinal Ganglion Cells for Retinal Prosthesis

  • Ye, Jang-Hee;Ryu, Sang-Baek;Kim, Kyung-Hwan;Goo, Yong-Sook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제12권6호
    • /
    • pp.307-314
    • /
    • 2008
  • Retinal prostheses are being developed to restore vision for the blind with retinal diseases such as retinitis pigmentosa (RP) or age-related macular degeneration (AMD). Among the many issues for prosthesis development, stimulation encoding strategy is one of the most essential electrophysiological issues. The more we understand the retinal circuitry how it encodes and processes visual information, the greater it could help decide stimulation encoding strategy for retinal prosthesis. Therefore, we examined how retinal ganglion cells (RGCs) in in-vitro retinal preparation act together to encode a visual scene with multielectrode array (MEA). Simultaneous recording of many RGCs with MEA showed that nearby neurons often fired synchronously, with spike delays mostly within 1 ms range. This synchronized firing - narrow correlation - was blocked by gap junction blocker, heptanol, but not by glutamatergic synapse blocker, kynurenic acid. By tracking down all the RGC pairs which showed narrow correlation, we could harvest 40 functional connectivity maps of RGCs which showed the cell cluster firing together. We suggest that finding functional connectivity map would be useful in stimulation encoding strategy for the retinal prosthesis since stimulating the cluster of RGCs would be more efficient than separately stimulating each individual RGC.

Role of peripheral vestibular receptors in the control of blood pressure following hypotension

  • Jin, Guang-Shi;Li, Xiang-Lan;Jin, Yuan-Zhe;Kim, Min Sun;Park, Byung Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권4호
    • /
    • pp.363-368
    • /
    • 2018
  • Hypotension is one of the potential causes of dizziness. In this review, we summarize the studies published in recent years about the electrophysiological and pharmacological mechanisms of hypotension-induced dizziness and the role of the vestibular system in the control of blood pressure in response to hypotension. It is postulated that ischemic excitation of the peripheral vestibular hair cells as a result of a reduction in blood flow to the inner ear following hypotension leads to excitation of the central vestibular nuclei, which in turn may produce dizziness after hypotension. In addition, excitation of the vestibular nuclei following hypotension elicits the vestibulosympathetic reflex, and the reflex then regulates blood pressure by a dualcontrol (neurogenic and humoral control) mechanism. In fact, recent studies have shown that peripheral vestibular receptors play a role in the control of blood pressure through neural reflex pathways. This review illustrates the dual-control mechanism of peripheral vestibular receptors in the regulation of blood pressure following hypotension.

Antipruritic effect of curcumin on histamine-induced itching in mice

  • Lee, Han Kyu;Park, Seok Bum;Chang, Su-youne;Jung, Sung Jun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권5호
    • /
    • pp.547-554
    • /
    • 2018
  • Itching is a common clinical symptom of skin disease that significantly affects a patient's quality of life. Transient receptor potential vanilloid 1 (TRPV1) receptors of keratinocytes and peripheral nerve fibers in skin are involved in the regulation of itching as well as pain. In this study, we investigated whether curcumin, which acts on TRPV1 receptors, affects histamine-induced itching in mice, using behavioral tests and electrophysiological approaches. We found that histamine-induced itching was blocked by topical application of curcumin in a concentration-dependent manner. In ex-vivo recordings, histamine-induced discharges of peripheral nerves were reduced by the application of curcumin, indicating that curcumin acts directly on peripheral nerves. Additionally, curcumin blocked the histamine-induced inward current via activation of TRPV1 (curcumin $IC_{50}=523nM$). However, it did not alter chloroquine-induced itching behavior in mice, which is associated with transient receptor potential ankyrin 1 (TRPA1). Taken together, our results suggest that histamine-induced itching can be blocked by topical application of curcumin through the inhibitory action of curcumin on TRPV1 receptors in peripheral nerves.

Initial Experience with Total Thoracoscopic Ablation

  • Lee, Hee Moon;Chung, Su Ryeun;Jeong, Dong Seop
    • Journal of Chest Surgery
    • /
    • 제47권1호
    • /
    • pp.1-5
    • /
    • 2014
  • Background: Recently, a hybrid surgical-electrophysiological (EP) approach for confirming ablation lines in patients with atrial fibrillation (AF) was suggested. The aim of this approach was to overcome the limitations of current surgery- and catheter-based techniques to yield better outcomes. Methods: Ten consecutive patients with AF underwent total thoracoscopic ablation (TTA) following transvenous catheter EP ablation (residual gap and cavotricuspid isthmus [CTI] ablation). Holter monitoring was performed 6 months postoperatively. Results: Ten patients (90% with persistent AF) underwent successful hybrid procedures, and there was no in-hospital mortality. An EP study was performed in 8 patients and showed that successful antral ablation in all pulmonary veins was achieved in 7 of them. The median follow-up duration was 7.63 months (range, 6.7 to 11.6 months). Nine patients underwent Holter monitoring 6 months postoperatively, and the results indicated an underlying sinus rhythm without AF, atrial flutter, or atrial tachycardia lasting more than 30 seconds in all of the patients. There was no recurrence of AF during follow-up. Conclusion: A hybrid approach that consists of TTA followed by transvenous catheter EP ablation (residual gap and CTI ablation) yielded excellent outcomes in our patient population. A hybrid approach should be considered in patients with a high risk of AF recurrence.