• 제목/요약/키워드: Electroosmotic Flow

검색결과 67건 처리시간 0.029초

Effects of Ionic Strength in the Medium on Sample Preconcentration Utilizing Nano-interstices between Self-Assembled Monolayers of Gold Nanoparticles

  • Nguyen, Ngoc-Viet;Wu, Jian-Sheng;Jen, Chun-Ping
    • BioChip Journal
    • /
    • 제12권4호
    • /
    • pp.317-325
    • /
    • 2018
  • This paper investigated the effects of ionic strength in the medium on a preconcentrator for a protein sample with low concentration. The preconcentration chip was designed and fabricated using a polydimethylsiloxane replica through standard lithophotography. A glass substrate is silanized prior to functionalizing the nanoparticles for self-assembly at a designed region. Due to the overlap of electrical double layers in a nanofluidic channel, a concentration polarization effect can be achieved using an electric field. A nonlinear electrokinetic flow is induced, resulting in the fast accumulation of proteins in front of the induced ionic depletion zone, so called exclusion-enrichment effect. Thus, the protein sample can be driven by electroosmotic flow and accumulated at a specific location. The chip is used to collect fluorescein isothiocyanate-labeled bovine serum albumin (FITC-BSA) diluted in phosphate-buffered saline (PBS) buffer solution. Different concentrations of the buffer media were studied herein. Fluorescence intensity images show that the buffer concentration of 4 mM is more appropriate than all the other ones. The sample of FITC-BSA with an initial concentration of $10{\mu}M$ in the 4 mM PBS solution increases its concentration at the desired region by up to 50 times within 30 min, demonstrating the results in this investigation.

마이크로 칩 전기영동에 응용하기 위한 다결정 실리콘 층이 형성된 마이크로 채널의 MEMS 가공 제작 (MEMS Fabrication of Microchannel with Poly-Si Layer for Application to Microchip Electrophoresis)

  • 김태하;김다영;전명석;이상순
    • Korean Chemical Engineering Research
    • /
    • 제44권5호
    • /
    • pp.513-519
    • /
    • 2006
  • 본 연구에서는 유리(glass)와 석영(quartz)을 재질로 사용하여 MEMS(micro-electro mechanical systems) 공정을 통해 전기영동(electrophoresis)을 위한 microchip을 제작하였다. UV 광이 실리콘(silicon)을 투과하지 못하는 점에 착안하여, 다결정 실리콘(polycrystalline Si, poly-Si) 층을 채널 이외의 부분에 증착시킨 광 차단판(optical slit)에 의해 채널에만 집중된 UV 광의 신호/잡음비(signal-to-noise ratio: S/N ratio)를 크게 향상시켰다. Glass chip에서는 증착된 poly-Si 층이 식각 마스크(etch mask)의 역할을 하는 동시에 접합표면을 적절히 형성하여 양극 접합(anodic bonding)을 가능케 하 였다. Quartz 웨이퍼에 비해 불순물을 많이 포함하는 glass 웨이퍼에서는 표면이 거친 채널 내부를 형성하게 되어 시료용액의 미세한 흐름에 영향을 미치게 된다. 이에 따라, HF와 $NH_4F$ 용액에 의한 혼합 식각액(etchant)을 도입하여 표면 거칠기를 감소시켰다. 두 종류의 재질로 제작된 채널의 형태와 크기를 관찰하였고, microchip electrophoresis에 적용한 결과, quartz과 glass chip의 전기삼투 흐름속도(electroosmotic flow velocity)가 0.5와 0.36 mm/s로 측정되었다. Poly-Si 층에 의한 광 차단판의 존재에 의해, peak의 S/N ratio는 quartz chip이 약 2배 수준, glass chip이 약 3배 수준으로 향상되었고, UV 최대흡광 감도는 각각 약 1.6배 및 1.7배 정도 증가하였다.

수계 콜로이드 계에서 교류 전계에 의한 입자 배열 제어 (Control of Particle Alignment in an Aqueous Colloidal System by an AC Electric Field)

  • 황연
    • 한국재료학회지
    • /
    • 제23권1호
    • /
    • pp.13-17
    • /
    • 2013
  • The alignments of polystyrene particles of $1{\mu}m$ and $5{\mu}m$ sizes in an aqueous colloidal system were observed by varying the electric field strength, the frequency and the water flow. Spherical mono-dispersed polystyrene particles dispersed in pure water were put into a perfusion chamber; an AC electric field was applied to the Au/Cr electrodes with a 4 mm gap on the glass substrate. The mixture of the $1{\mu}m$ and $5{\mu}m$ sized polystyrene particles at 0.5 vol% concentrations for each size was set in the dielectrophoresis conditions of 1 kHz and 150 V/cm. Large particles of $5{\mu}m$ size were aligned to form chains as the result of the dielectrophoresis force interaction. On the contrary, small particles of $1{\mu}m$ size did not form chains because the dielectrophoresis force was not sufficiently large. When the electric field increased to 250 V/cm, small particles were able to form chains. After the chains were formed from both large and small particles, they began to coalescence as time passed. Owing to the electroosmotic flow of water, wave patterns along the perpendicular direction of the applied electric field appeared at the conditions of 200 Hz and 50 V/cm, when the dielectrophoresis force was small. This wave pattern also appeared for small particles at 1 kHz and 150 V/cm conditions due to the flow of solvent when water was forced to circulate.

마이크로 전기영동 소자의 제작과 유로 면 특성에 따른 전기삼투 및 전기영동 효과 (Fabrication of electro phoresis microchips and effects of channel surface properties)

  • 김민수;조승일;이국녕;김용권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.286-289
    • /
    • 2003
  • We investigated the influence of the properties of substrate material on the separation efficiency in microchip electrophoresis. We fabricated the various microchips and studied separation efficiency in microchannels composed of a single material such as quartz, glass, polydimethylsiloxane (PDMS), and polymethylmetha crylate (PMMA), as well as hybrid micro channels composed of different materials. New fabrication process for glass chip was suggested and some treatment is added to improve fabrication process in other chip. Separation efficiency was compared by measuring migration times and bandwidths of EOF and analytes in each microchip. The efficiency is the function of migration time, which is affected by the electroosmotic flow (EOF), and bandwidth of an analyte. EOF is highly dependent upon the characteristics of a microchannel wall surface. Migration time was more reproducible in silica chips than that of PDMS chip and more band broadening was observed in the microchip composed of hybrid material due to non-uniformity of surface charge density at the walls of the channel.

  • PDF

Iontophoretic Transport of Donepezil Hydrochloride through Skin: Flux Enhancement by Chemical Enhancer and Iontophoresis

  • Oh, Seaung-Youl
    • Journal of Pharmaceutical Investigation
    • /
    • 제41권6호
    • /
    • pp.337-345
    • /
    • 2011
  • The objective of this work is to investigate the effect of chemical enhancer and current on the flux of donepezil hydrochloride (DH) through skin. Ethanol and N-methyl pyrrolidone (NMP) were used as chemical enhancers in combination with iontophoresis. We also have studied the effect of pH on flux and evaluated the role of electroosmosis. In vitro flux study was performed at $33^{\circ}C$, using side-by-side diffusion cell and full thickness hairless mouse skin. Passive flux of DH without enhancer was very small. As the concentration of enhancer increased, passive flux increased. After current application, flux increased markedly and the time to reach maximum decreased. Without enhancer, maximum flux was about 50 fold larger than that obtained without current. These results indicate that electromigration is playing a major role for the transport. As the enhancer concentration increased, flux also increased. NMP and ethanol increased not only the passive delivery, but also the iontophoretic delivery. Flux results indicate that ethanol has better ability than NMP in enhancing the transport of DH. The magnitudes of increase in flux by these enhancers indicate that there is a large synergistic effect in flux enhancement. Flux results from pH study showed that electroosmotic flow is reversed at low pH and the flux is hindered. These results provided some information on the flux enhancing ability of ethanol and NMP in combination with iontophoresis. The data also provided some mechanistic insights into the role of electromigration and electroosmosis on flux through skin.

Semi-pilot Study of Electrokinetic Process for Phenanthrene Removal from Kaolinite

  • Lee, You-Jin;Park, Ji-Yeon;Kim, Sang-Joon;Lee, Young-Cheol;Yang, Ji-Won
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.215-218
    • /
    • 2004
  • The electrokinetically enhanced soil flushing had a great potential to improve the removal efficiency of polycyclic aromatic hydrocarbons (PAHs) from low permeable soils. A semi-pilot study of surfactant-enhanced electrokinetic process was investigated for the removal of phenanthrene from kaolinite. A nonionic surfactant, Tergitol 15-S-12 at 10 g/L was introduced as a flushing agent and 0.001M of sodium chloride was used as an electrolyte. When the constant voltage of 100 V was applied to the system for 25 days, only 0.66 kWh of electric power was consumed and the amount of electroosmotic flow was 6.9 L. The removal efficiency of phenanthrene was about 40 % and it can be improved by increasing the ion concentration of the flushing solution or the applied voltage.

  • PDF

모세관 전지영동법에 의한 굴뚝에서 포집된 NaOH 용액속의 염소이온의 측정 (Determinaton of Chloride Ion Captured into Strong NaOH Solution from Chimney by Capillary Electrophoresis)

  • 임인덕;성용익;김양선;임흥빈
    • 한국대기환경학회지
    • /
    • 제15권3호
    • /
    • pp.327-333
    • /
    • 1999
  • Determination of chloride ion in concentrated NaOH solution by capillary electrophoresis has been studied. The analysis was performed by indirect UV absorption detection using chromate buffer at 254nm. The matrix effect of the sample has been observed so that the sensitivity in strong NaOH solutaion has decreased up to 10% of that in distilled water. The pH effect of the sample on the sensitivity of CE peaks has been investigated. The method for increasing the sensitivity have been investigated and the optimum pH and concentration of the buffer were 7.5 and 10mM, respectively. A cationic surfactant cetyltrimethylammonium bromide(CTAB), was added to a buffer solution in order to reverse the electroosmotic flow(EOF) in the capillary. This results in a short analysis time and better peak shapes. Using this optimum condition, the determination of chloride ion in real environmental sample has been performed, which is captured in strong NaOH absorbent prepared for absorbing gas from chimney. The standard addition method has been applied for the quantitative analysis, and it was obtained the good reproducibility.

  • PDF

Effects of Electric Current and Potential on the Electrokinetic Removal of Heavy Metals from an Abandoned Mine Tailings

  • Shin, Hyun-Moo;Lee, Chang-Eun
    • 한국환경과학회지
    • /
    • 제13권2호
    • /
    • pp.149-159
    • /
    • 2004
  • In the removal of heavy metals from the mine deposit using electrokinetic processes, the effects of operation under both constant current and constant potential conditions were estimated. The results of soil pH distributions for DDW-20 V and DDW-100 mA cases after the electrokinetic remediation tests were observed. In the former case, soil pH was not much changed and kept to almost constant value just little higher than initial soil pH of 3.52, except near the cathode, which was about pH 5. While in the latter case, soil pHs of anode and the cathode regions were less than pH 3 and about 6, respectively. The electroosmotic flow to the cathode increased rapidly till 10 hrs and decreased steadily and then maintained to constant rate until the end of operation at constant current condition. Electric potential gradient was continuously increased to as much as 34.375 V/cm. At the steady state, values of the apparent electric conductivity for DDW-20 V and DDW-100 mA were around 40 ${\mu}\textrm{s}$/cm and 30 ${\mu}\textrm{s}$/cm, respectively. In the DDW-100mA test, Cu, Cd, and Zn except Pb showed the tendency of moving toward the cathode. While in the DDW-20 V case, it was observed that Cu, Zn, and Pb except Cd were not moved to any directions. The results of the tests demonstrated that the electrokinetic soil remediation process could be operated better under constant current condition than constant electric potential condition.

전류를 이용한 Levodopa의 경피전달: 낮은 pH에서의 투과 (Electrotransport of Levodopa through Skin: Permeation at Low pH)

  • 조정은;오승열
    • Journal of Pharmaceutical Investigation
    • /
    • 제40권1호
    • /
    • pp.23-31
    • /
    • 2010
  • In our previous work on levodopa delivery at pH 2.5 using iontophoresis, we found that cathodal delivery showed higher permeation than anodal delivery and electroosmosis plays more dominant role than electrorepulsion. In this work, we studied the transdermal transport of levodopa at very low pH (pH=1.0) where all levodopa molecules are cations, and evaluated some factors which affect the transdermal transport. The transport study at pH 2.5 was also conducted for comparison. The contribution of electrorepulsion and electroosmosis on flux was also evaluated. Using stable aqueous solution, the effect of electrode polarity, current density, current type and drug concentration on transport through skin were studied and the results were compared. We also investigated the iontophoretic flux from hydroxypropyl cellulose (HPC) hydrogel containing levodopa. In vitro flux study was performed at $33^{\circ}C$, using side-by-side diffusion cell. Full thickness hairless mouse skin were used. Current densities applied were 0.2, 0.4 or $0.6\;mA/cm^2$. Contrary to the pH 2.5 result, anodal delivery showed higher flux, indicating that electrorepulsion is the dominant force for the transport, overcoming the electroosmotic flow which is acting against the direction of electrorepulsion. Cumulative amount of levodopa transported was increased as the current density or drug concentration was increased. When amount of current dose was constant, continuous current was more beneficial than pulsed current in promoting levodopa permeation. Similar transport results were obtained when hydrogel was used as the donor phase. These results indicate that iontophoretic delivery of zwitterion such as levodopa is much complicated than that can be expected from small ionic molecules. The results also indicate that, only at very low pH like pH 1.0, electrorepulsion can be the dominant force over the electroosmosis in the levodopa transport.

Polydimethylsiloxane 채널과 indium tin oxide 전극을 이용한 일회용 전기화학적 검출 시스템 (Disposable Microchip-Based Electrochemical Detector Using Polydimethylsiloxane Channel and Indium Tin Oxide Electrode)

  • 이인제;강치중;김용상;김주호
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권5호
    • /
    • pp.227-231
    • /
    • 2005
  • We have developed a microsystem with a capillary electrophoresis (CE) and an electrochemical detector (ECD). The microfabricated CE-ECD systems are adequate for a disposable type and the characteristics are optimized for an application to the electrochemical detection. The system was realized with polydimethylsiloxane (PDMS)-glass chip and indium tin oxide electrode. The injection and separation channels (80 um wide$\ast$40 um deep) were produced by moulding a PDMS against a microfabricated master with relatively simple and inexpensive methods. A CE-ECD systems were fabricated on the same substrate with the same fabrication procedure. The surface of PDMS layer and ITO-coated glass layer was treated with UV-Ozone to improve bonding strength and to enhance the effect of electroosmotic flow. For comparing the performance of the ITO electrodes with the gold electrodes, gold electrode microchip was fabricated with the same dimension. The running buffer was prepared by 10 mM 2-(N-morpholino)ethanesulfonic acid (MES) titrated to PH 6.5 using 0.1 N NaOH. We measured olectropherograms for the testing analytes consisted of catechol and dopamine with the different concentrations of 1 mM and 0.1 mM, respectively. The measured current peaks of dopamine and catechol are proportional to their concentrations. For comparing the performance of the ITO electrodes with the gold electrodes, electropherograms was measured for CE-ECD device with gold electrodes under the same conditions. Except for the base current level, the performances including sensitivity, stability, and resolution of CE-ECD microchip with ITO electrode are almost the same compared with gold electrode CE-ECD device. The disposable CE/ECD system showed similar results with the previously reported expensive system in the limit of detection and peak skew. When we are using disposable microchips, it is possible to avoid polishing electrode and reconditioning.