• Title/Summary/Keyword: Electroosmotic Flow

Search Result 67, Processing Time 0.025 seconds

A Continuous Electrical Cell Lysis Chip using a DC Bias Voltage for Cell Disruption and Electroosmotic Flow (한 쌍의 전극으로 전기 삼투 유동과 세포 분쇄 기능을 동시에 구현한 연속적인 세포 분쇄기)

  • Lee, Dong-Woo;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.10
    • /
    • pp.831-835
    • /
    • 2008
  • We present a continuous electrical cell lysis chip, using a DC bias voltage to generate the focused high electric field for cell lysis as well as the electroosmotic flow for cell transport. The previous cell lysis chips apply an AC voltage between micro-gap electrodes for cell lysis and use pumps or valves for cell transport. The present DC chip generates high electrical field by reducing the width of the channel between a DC electrode pair, while the previous AC chips reducing the gap between an AC electrode pair. The present chip performs continuous cell pumping without using additional flow source, while the previous chips need additional pumps or valves for the discontinuous cell loading and unloading in the lysis chambers. The experimental study features an orifice whose width and length is 20 times narrower and 175 times shorter than the width and length of a microchannel. With an operational voltage of 50 V, the present chip generates high electric field strength of 1.2 kV/cm at the orifice to disrupt cells with 100% lysis rate of Red Blood Cells and low electric field strength of 60 V/cm at the microchannel to generate an electroosmotic flow of $30{\mu}m/s{\pm}9{\mu}m/s$. In conclusion, the present chip is capable of continuous self-pumping cell lysis at a low voltage; thus, it is suitable for a sample pretreatment component of a micro total analysis system or lab-on-a-chip.

Transdermal Delivery of Ketoprofen and the Effect of Electroosmosis (케토프로펜의 경피전달 및 전기삼투압의 영향)

  • Oh, Seaung-Youl
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.6
    • /
    • pp.491-497
    • /
    • 2004
  • We investigated some important factors which affect the transdermal flux of ketoprofen, a nonsteroidal anti-inflammatory agent, as a first step to provide some basic knowledge for the development of a iontophoretic transdermal patch system. Factors such as current density, polarity, buffer (HEPES) and electrolyte concentration and pH were studied using hairless mouse skin. The effect of poly(L-lysin), which is known to affect the electro-osmotic flow through skin, on flux was also studied. Passive flux was about $20\;{\mu}g/cm^2hr$ at pH 4.0, but was negligible at pH 7.4 where all ketoprofen molecules dissolved are ionized (ketoprofen pKa=5.94). At pH 4.0, application of anodal current increased the flux further above the passive level, however anodal flux at pH 7.4 was much smaller than passive flux at pH 4.0. The application of cathodal current at pH 4.0 increased the average flux to $30-40\;{\mu}g/cm^2hr$, depending on the current density applied. At pH 7.4, cathodal flux was only about $5\;{\mu}g/cm^2hr$. Decrease in buffer and electrolyte concentration increased this cathodal flux about 10 fold. However decrease in HEPES buffer concentration 100 fold did not affect the flux. Anodal flux of acetaminophen was much larger than cathodal flux, indicating that electroosmotic flow can be playing an important role in the flux. Poly(L-lysin) increased the cathodal flux at pH 7.4. These results provide some important insights into the mechanism of transdermal flux of ketoprofen and the role of electroosmotic flow.

Transient Evolution of Overlapped EDL Fields in a Microfluidic Channel (미소유동 채널에서 중첩된 전기이중층 구조의 과도 형성과정)

  • Kwak, Ho-Sang;Hasselbrink, Jr., Ernest F.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1528-1533
    • /
    • 2004
  • A numerical investigation is made of transient evolutionary prcocess of electroosmotic flow in a two-dimensional microchannel connected to a reservoir. The channel height is very small so that two electric double layers forming on the charged surfaces are overlapped. Transient transports of ions in the electrolyte solution are computed by integrating the Nernst-Planck equation together with the Poisson equation for electric potential. The numerical results illustrate that there are two distinct transient phases. The physical mechanisms and relevant time scales for the transient evolution are described.

  • PDF

The remediation of contaminated kaolinite by phenanthrene using Electrokinetic-Fenton process (Electrokinetic-Fenton 공정에 의한 Phenanthrene으로 오염된 카올린의 정화)

  • 김정환;김익현;한상재;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.593-596
    • /
    • 2002
  • This study examined the feasibility of Electrokinetic-Fenton process for remediation of contaminated kaolinite by phenanthrene. The test using 7% H$_2$O$_2$as anode purging solution indicated the higher electrical current and electroosmotic flow than the test using 3.5% H$_2$O$_2$. And distribution in the soil of H$_2$O$_2$concentration showed the higher value of the former than the latter. Furthermore, the test using 7% H$_2$O$_2$and 0.01N H$_2$SO$_4$was the highest electrical current and electroosmotic flow and H$_2$O$_2$was effectively introduced to the cathode region. As it turned out, the treatment effect of phenanthrene was improved in compare with the other tests.

  • PDF

A STUDY ON THE DEVELOPMENT OF ONE-DIMENSIONAL GUI PROGRAM FOR MICROFLUIDIC-NETWORK DESIGN (마이크로 유동 네트워크 설계를 위한 1차원 GUI 프로그램 개발에 관한 연구)

  • Park, I.H.;Kang, S.;Suh, Y.K.
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.86-92
    • /
    • 2009
  • Nowadays, the development of microfluidic chip [i.e. biochip, micro-total analysis system ($\mu$-TAS) and LOC (lab-on-a-chip)] becomes more active, and the microchannels to deliver fluid by pressure or electroosmotic forces tend to be more complex like electronic circuits or networks. For a simple network of channels, we may calculate the pressure and the flow rate easily by using suitable formula. However, for complex network it is not handy to obtain such information with that simple way. For this reason, Graphic User Interface (GUI) program which can rapidly give required information should be necessary for microchip designers. In this paper, we present a GUI program developed in our laboratory and the simple theoretical formula used in the program. We applied our program to simple case and could get results compared well with other numerical results. Further, we applied our program to several complex cases and obtained reasonable results.

토양환경복원과 관련 동전기 기술의 적용에 대한 저항상태에 따른 전기삼투량 변화의 이해

  • 양지원;김상준;박지연;이유진;기대정
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.330-333
    • /
    • 2003
  • Recently electrokinetic process is known to be a promising remediation technology for the contaminated soils with heavy metals, radionuclides, organic matters, and so on. The contaminants in electrokinetic technology are removed mainly by three mechanisms; electroosmosis, electromigration, and electrophoresis. When direct current is introduced between two electrodes planted in soil, a large amount of hydrogen ions is formed and moves from anode to cathode with the other cations contained in electrolyte. The water flow caused by tile movement of cations is called as electroosmosis. Especially for non-ionic pollutants, the electroosmotic flow(EOF) is the most important removal mechanism among them and transports contaminants from anode to cathode along the water flow. In this study, characteristics of electroosmotic flow was investigated according to the resistance state of soil. The decrease, maintenance, and increase of soil resistance could be obtained by controlling ions in soil. When the resistance of soil was decreasing or maintained, the EOF is proportional to electric current and voltage, respectively and when the resistance was increasing, the EOF is proportional to only electric current not voltage.

  • PDF

Effect of Heavy Metal Species on the Removal of Cu, Pb, and Cd Contaminated Soils Using Electrokinetic Process (Cu, Pb, 및 Cd로 오염된 토양의 동전기적 방법에 의한 제거에 있어 중금속 종이 미치는 영향)

  • Sin, Hyeon Mu;Yun, Sam Seok
    • Journal of Environmental Science International
    • /
    • v.13 no.1
    • /
    • pp.61-68
    • /
    • 2004
  • Three kinds of toxic heavy metals, such as lead, copper, and cadmium, existing abundantly in contaminated soils were selected to investigate pH change, electroosmotic flow, and the removal rate in the application of electrokinetic process. In the change of pHs, they reached to about 12 and 2 at each cathodic and anodic region, respectively, and maintained for reaction being proceeded. Electroosmotic flow rates were not influenced by the kind of metal species but by electropotential gradient. On the soils contaminated by each metal, the removal rate of Cd was the fastest among three as in the order of Cd>Pb>Cu. While on the soils contaminated by mixed metal species, Cu was the fastest. Metal species transported by electrokinetic processes were distributed in between 0.9 and 1.0 of normalized region. In the case of soils contaminated by one kind of metal. the relative concentrations of Pb and Cd estimated in between normalized region 0.9 and 1.0 were 5.2 and 5.7, respectively.

Electrochemical Characteristics of Fine Soils in the Application of Electrokinetic Remediation (동전기력 복원공정 적용에 따른 세립토양의 전기화학적 특성 변화)

  • 고석오
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.85-94
    • /
    • 2002
  • Overall objective of this study was to evaluate the electrochemical characteristics of fine soils during the electrokinetic(EK) remediation. Zeta potential of kaolinite as a function of solution pH and surfactant concentration was investigated to make a relationship with electroosmotic flow direction and rate. During the EK experiments, pH of pore solution, electroosmotic permeability($k_e$), electric conductivity($\delta_e$) and voltage distribution was measured, respectively, The point of zero charge(PZC) of kaolinite was estimated to be about 4.2 and the zeta potential of kaolinite above PZC was more negative as solution pH increased. Sorption of surfactants on the kaolinite altered the zeta potential of kaolinite. resulting from the variation of electrochemical characteristics of kaolinite surface. hs the EK experiment progressed, low pH was predominant over most of the kaolinite specimen and thus resulted in very low mass and charge flow. The $k_e$ and $\delta_e$ was also affected by the variation of voltage drop across the EK column with time. Results from this study implied that zeta potential of kaolinite affected by the pH variation of pore solution and voltage distribution in soil column played important role in the determination of mass and charge flow during EK process. It was also suggested that pH adjustment or addition of suitable sorbates could alter the electrochemical characteristics of soil surface and thus maintain high mass and charge flow rate with time.

Electrohydrodynamic Flow around a Circular-Cylindrical Rod Submerged in a Dielectric Liquid (비전도성 액체에서의 실린더 막대 주변에 생기는 전기동역학적 유체흐름)

  • Park, Hyun-Jin;Ryu, Jae-Chun;Kang, Kwan-Hyoung
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.51-54
    • /
    • 2007
  • The induced-charge electroosmosis (ICEO) is a kind of electroosmotic flow which is generated by the electrical charge induced by an externally-applied electric field. That kind of electrokinetic phenomenon provides a nonmechanical technique to handle microscale flows and particles. In this work, we report that the ICEO-like flow is observed around two kinds of circular-cylindrical rod submerged in a dielectric liquid. The conductivity of the solution is varied by adding a surfactant. The flow field is visualized by the PIV method, and average flow speed shows a remarkable dependence on electrical input frequency. Interestingly, the characteristics of the flow are quite different from the conventional ICEO with respect to the flow direction and the locations of center of vortices.

  • PDF