• Title/Summary/Keyword: Electronics Engineering

Search Result 27,603, Processing Time 0.053 seconds

Determination of Proper Irrigation Scheduling for Automated Irrigation System based on Substrate Capacitance Measurement Device in Tomato Rockwool Hydroponics (토마토 암면재배에서 정전용량 측정장치를 기반으로 한 급액방법 구명)

  • Han, Dongsup;Baek, Jeonghyeon;Park, Juseong;Shin, Wonkyo;Cho, Ilhwan;Choi, Eunyoung
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.366-375
    • /
    • 2019
  • This experiment aims to determine the proper irrigation scheduling based on a whole-substrate capacitance using a newly developed device (SCMD) by comparing with the integrated solar radiation automated irrigation system (ISR) and sap flow sensor automated irrigation system (SF) for the cultivation of tomato (Solanum lycopersicum L. 'Hoyong' 'Super Doterang') during spring to winter season. For the SCMD system, irrigation was conducted every 10 minutes after the first irrigation was started until the first run-off was occurred, of which the substrate capacitance was considered to be 100%. When the capacitance threshold (CT) was reached to the target point, irrigation was re-conducted. After that, when the target drain volume (TDV) was occurred, the irrigation stopped. The irrigation volume per event for the SCMD was set to 50, 75, or 100 mL at CT 0.9 and TDV 100 mL during the spring to summer cultivation, and the CT was set to 0.65, 0.75, 0.80, or 0.90 in the winter cultivation. When the irrigation volume per event was set to 50, 75, or 100 mL, the irrigation frequency in a day was 39, 29, and 19, respectively, and the drain rate was 3.04, 9.25, and 20.18%, respectively. When the CT was set to 0.65, 0.75, or 0.90 in winter, the irrigation frequency was about 6, 7, 15 times, respectively and the drain rate was 9.9, 10.8, 35.3% respectively. The signal of stem sap flow at the beginning of irrigation starting time did not correspond to that of solar irradiance when the irrigation volume per event was set to 50 or 75 mL, compared to that of 100 mL. In winter cultivation, the stem sap flow rate and substrate volumetric water content at the CT 0.65 treatment were very low, while they were very high at CT 0.90 was high. All the integrated data suggest that the proper range of irrigation volume per event is from 75 to 100 mL under at CT 0.9 and TDV 100 mL during the spring to summer cultivation, and the proper CT seems to be higher than 0.75 and lower than 0.90 under at 75 mL of the irrigation volume per event and TDV 70 mL during the winter cultivation. It is going to be necessary to investigate the relationship between capacitance value and substrate volumetric water content by determining the correction coefficient.

Study on Bandwidth and Characteristic Impedance of CWP3DCS (Coplanar Waveguide Employing Periodic 3D Coupling Structures) for the Development of a Radio Communication FISoC (Fully-integrated System on Chip) Semiconductor Device (완전집적형 무선통신 SoC 반도체 소자 개발을 위한 주기적인 3차원 결합구조를 가지는 코프레너 선로에 대한 대역폭 및 임피던스 특성연구)

  • Yun, Young
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.179-190
    • /
    • 2022
  • In this study, we investigated the characteristic impedance and bandwidth of CPW3DCS (coplanar waveguide employing periodic 3D coupling structures), and examined its potential for the development of a marine radio communication FISoC (fully-integrated system on chip) semiconductor device. To extract bandwidth and characteristic impedance of the CPW3DC, we induced a measurement-based equation reflecting measured insertion loss, and compared the measured results of the propagation constant β and characteristic impedance with the measured ones. According to the results of the comparison, the calculated results show a good agreement with the measured ones. Concretely, the propagation constant β and characteristic impedance exhibited an maximum error of 3.9% and 6.4%, respectively. According to the results of this study, in a range of LT = 30 ~ 150 ㎛ for the length of periodic structures, the CPW3DC exhibited a passband characteristic of 121 GHz, and a very small dependency of characteristic impedance on frequency. We could realize a low impedance transmission line with a characteristic impedance lower than 20 Ω by using CPW3DCS with a line width of 20 ㎛, which was highly reduced, compared with a 3mm line width of conventional transmission line with the same impedance. The characteristic impedance was easily adjusted by changing LT. The above results indicate that the CPW3DC can be usefully used for the development of a wireless communication FISoC (fully-integrated system on chip) semiconductor device. This is the first report of a study on the bandwidth of the CPW3DC.

Science and Technology ODA Promotion of Korea through ICT of Global Problem Solving Centers -Suggestion on the mid- and short-term projects promotion of science and technology ODA roadmap- (글로벌문제해결거점 ICT화를 통한 한국형 과학기술 ODA 추진 -과학기술 ODA 중·단기 과제 추진에 대한 제언-)

  • Jung, Woo-Kyun;Shin, Kwanwoo;Jeong, Seongpil;Park, Hunkyun;Park, Eun Sun;Ahn, Sung-Hoon
    • Journal of Appropriate Technology
    • /
    • v.7 no.2
    • /
    • pp.162-171
    • /
    • 2021
  • The Korean government proposed the K-SDGs in 2019 to promote the UN SDGs, but the role and tasks of science and technology, an important means of implementing the SDGs, have not been materialized. Accordingly, the role of science and technology ODA for the SDGs was established through the Ministry of Science and ICT's policy research project 'Science and Technology ODA Promotion Roadmap for Spreading the New Southern Policy and Realizing the 2030 SDGs'. In addition, goals, strategies, and core tasks for the next 10 years were derived in 10 fields such as water, climate change, energy, and ICT. In this paper, we analyze 30 key tasks of the ODA promotion roadmap for science and technology for the realization of SDGs, and propose mid- and short-term tasks and implementation plans for effective roadmap promotion. Among the key tasks in each field, four common elements were derived: ICT/smartization, a global problem-solving center, cooperation/communication platform, and business model/startup support platform/living lab that can create and integrate roadmap implementation conditions. In addition, the four mid- and short-term tasks, 1) Establishment of science and technology ODA network, 2) Establishment of living lab business platform linked to start-up support business, 3) Local smartization of recipient countries, and 4) Expand and secure sustainability of global problem-solving centers, were set in relation to the implementation of the detailed roadmap. For the derived mid- and short-term tasks, detailed implementation plans based on the ICTization of global problem-solving centers were presented. The implementation of the mid- and short-term tasks presented in this paper can contribute to the more effective achievement of the science and technology ODA roadmap, and it is expected that Korea's implementation of SDGs will also achieve high performance.