• Title/Summary/Keyword: Electronic waves

Search Result 296, Processing Time 0.029 seconds

EEG Analysis for Cognitive Mental Tasks Decision (인지적 정신과제 판정을 위한 EEG해석)

  • Kim, Min-Soo;Seo, Hee-Don
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.289-297
    • /
    • 2003
  • In this paper, we propose accurate classification method of an EEG signals during a mental tasks. In the experimental task, subjects achieved through the process of responding to visual stimulus, understanding the given problem, controlling hand motions, and select a key. To recognize the subjects' selection time, we analyzed with 4 types feature from the filtered brain waves at frequency bands of $\alpha$, $\beta$, $\theta$, $\gamma$ waves. From the analysed features, we construct specific rules for each subject meta rules including common factors in all subjects. In this system, the architecture of the neural network is a three layered feedforward networks with one hidden layer which implements the error back propagation learning algorithm. Applying the algorithms to 4 subjects show 87% classification success rates. In this paper, the proposed detection method can be a basic technology for brain-computer-interface by combining with discrimination methods.

Customer Willingness to Use Smart Grid Services in Home (스마트 그리드 서비스에 대한 고객 수용도 분석)

  • Kim, Young-Myoung;Lee, Young-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9B
    • /
    • pp.1399-1406
    • /
    • 2010
  • Customers can monitor electricity use in real time in smart grid(ICT is grafted onto current grid), so various beneficial services can be provided to customer. We did a qualitative survey, HV(Home Visit) and FGD(Focus Group Discussion), in order to derive customer's cognition of using electricity in home and values that customers consider significantly and a quantitative survey in order to know willingness to use. Customers consider electricity indispensible for using home appliances, want to use safely far from electromagnetic waves, short circuit and electronic shock. Also, customers want to save energy conveniently with no stress. Customers want 'a function', 'information', 'motivation' for energy saving, and 'electromagnetic waves cutting', 'to prevent electronic shock', 'to prevent short circuit' for safe electricity use. In this study, we derived 4 services - energy monitoring, standby power cutting, remote control, energy consulting - based on customer values and unmet needs, which is connected to home network that customers can monitor total and each appliance's electricity usage in real time and control home appliances. The willingness to use of services is over 60% and especially energy monitoring and standby power cutting service have high willingness to use rate, about 80%.

A minimizing method of baseline wandering using a difference signal in ECG (심전도 차신호를 이용한 기저선 변동의 최소화 방법)

  • Ju, Jangkyu;Lee, Ki Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • This paper studies a method to minimize the baseline wandering that make hard to extract R-wave in ECG. This method uses a difference signal between ECG and ascending slope tracing waves to minimize the baseline wandering. When the slope of ECG signal maintains the value or falls, the ascending slope tracing wave follows ECG signal directly, and this wave holds that value of ECG signal when the slope begins to rises in a certain time(=hold time). After this hold time, this wave traces ECG signal again. This method has been applied to MIT/BIH database to verify its efficacy and validity in practical applications.

  • PDF

Design and Implementation of prototype model of Smart Diffuser using Smart Phone (스마트폰을 이용한 스마트 디퓨저의 프로토 타입 모델 설계 및 구현)

  • Choi, Sung-Jai
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.149-154
    • /
    • 2020
  • This paper presented a design and a implementation of prototype model which is the smart diffuser device controlled by using Bluetooth technology in the smart phone. We used the ultrasonic waves oscillator so that the smart diffuser was able to spray oil into a device. The device was developed to find out the high brightness led colors switched during spraying the oil. By using the Li-Po battery of 40mAh capacity, we were able to design this portable device was prolonged available time to use and to solve the charging time problem. We realized the availability of prototype model which is using the Bluetooth Low Energy for operating the low power driving.

Correlation of Peak Time Shift in Blood Pressure Waveform and PPG Based on Compliance Change Analysis in RLC Windkessel Model

  • Choi, Wonsuk;Cho, Jin-Ho
    • Current Optics and Photonics
    • /
    • v.1 no.5
    • /
    • pp.529-537
    • /
    • 2017
  • We explored how changes in blood vessel compliance affected the systolic rise time (SRT) of the maximum blood pressure (BP) peak wave and the diastolic fall time (DFT) of the minimal BP peak wave, compared to photoplethysmograpic (PPG) parameters, using a two-compartment, second-order, arterial Windkessel model. We employed earlier two-compartment Windkessel models and the components thereof to construct equivalent blood vessel circuits, and reproduced BP waveforms using PSpice technology. The SRT and DFT values were obtained via circuit simulation, considering variations in compliance (the dominant influence on blood vessel parameters attributable to BP changes). And then performed regression analysis to identify how compliance affected the SRT and DFT. We compared the SRTs and DFTs of BP waves to the PPG values by reference to BP changes in each subject. We confirmed that the time-shift propensities of BP waves and the PPG data were highly consistent. However, the time shifts differed significantly among subjects. These simulation and experimental results allowed us to construct an initial trend curve of individual BP peak time (measured via wrist PPG evaluations at three arm positions) that facilitated accurate individual BP estimations.

Determination of Sasang Constitution from Artery Pulse Waves (요골 맥파를 이용한 사상체질 판별)

  • Cho, Jae Kyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.359-365
    • /
    • 2020
  • Sasang Constitution data that were classified by the QSCCII (Questionnaire for the Sasang Constitution Classification II) and artery pulse waves of Chon, Guan, and Chuck data measured using an electronic manometer, were obtained from 732 subjects who visited an oriental hospital. The pulse width, peak height, and number of peaks were extracted from the pulse waves as feature variables. Validity and reliability analyses were performed to obtain the feature variables. The feature variables with high validity and reliability were selected as the discriminant variables. The pulse wave data were divided into training and predicting samples by applying a fivefold cross-validation technique. Discriminant analysis was performed for the training sample, and discriminant functions were obtained. The discriminant functions were applied to the predicting sample and the Sasang Constitution was predicted. The accuracy of prediction was estimated by comparing the predicted Sasang Constitution and that obtained by QSCCII. The accuracy of the predicted Sasang Constitution before (after) age and sex calibration was 73.6 % (70.4 %), 68.4 % (84.2 %), and 74.2 % (67.7 %) for Taeumin, Soumin, and Soyangin, respectively, and 72.5 % (73.8 %) in total.

Diffraction of Electromagnetic Waves by Right Angle Dielectric Wedge (직각 쐐기형 유전분에 의한 전자파 회절)

  • Ju, Chang-Seong;Ra, Jeong-Ung;Sin, Sang-Yeong
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.18 no.5
    • /
    • pp.35-45
    • /
    • 1981
  • An asymptotic solution of electromagnetic waves scattered by a right-angled dielectric wedge for plane wave incidence is obtained. Scattered fields are constructed by waves reflected and refracted from dielectric interfaces (geometric-optical fields) and a cylindrical wave diffracted from the edge. The edge diffracted field is obtained by adding a correction to the edge diffraction of physical optics approximation, where the correction field is calculated by solving a dual series equation amenable to simple numerical calculation. Validity of this result is assured by two limits of relative dielectric constant $\varepsilon$ of the wedge. The total asymptotic field calculated results in a Rawlins' Neumann series solution for small $\varepsilon$, and the edge diffraction pattern is shown to approach that of a perfectly conducting wedge for large $\varepsilon$. Calculated field patterns are presented and the accuracy of physical optics approximation is discussed.

  • PDF

Application of Graphene in Photonic Integrated Circuits

  • Kim, Jin-Tae;Choe, Seong-Yul;Choe, Chun-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.196-196
    • /
    • 2012
  • Graphene, two-dimensional one-atom-thick planar sheet of carbon atoms densely packed in a honeycomb crystal lattice, has grabbled appreciable attention due to its extraordinary mechanical, thermal, electrical, and optical properties. Based on the graphene's high carrier mobility, high frequency graphene field effect transistors have been developed. Graphene is useful for photonic components as well as for the applications in electronic devices. Graphene's unique optical properties allowed us to develop ultra wide-bandwidth optical modulator, photo-detector, and broadband polarizer. Graphene can support SPP-like surface wave because it is considered as a two-dimensional metal-like systems. The SPPs are associated with the coupling between collective oscillation of free electrons in the metal and electromagnetic waves. The charged free carriers in the graphene contribute to support the surface waves at the graphene-dielectric interface by coupling to the electromagnetic wave. In addition, graphene can control the surface waves because its charge carrier density is tunable by means of a chemical doping method, varying the Fermi level by applying gate bias voltage, and/or applying magnetic field. As an extended application of graphene in photonics, we investigated the characteristics of the graphene-based plasmonic waveguide for optical signal transmission. The graphene strips embedded in a dielectric are served as a high-frequency optical signal guiding medium. The TM polarization wave is transmitted 6 mm-long graphene waveguide with the averaged extinction ratio of 19 dB at the telecom wavelength of $1.31{\mu}m$. 2.5 Gbps data transmission was successfully accomplished with the graphene waveguide. Based on these experimental results, we concluded that the graphene-based plasmonic waveguide can be exploited further for development of next-generation integrated photonic circuits on a chip.

  • PDF

Non-Intrusive Healthcare System for Estimation of Vascular Condition in IP-Enabled Wireless Network (IP 기반 무선네트워크에서의 혈관상태 평가를 위한 무구속 헬스케어 시스템)

  • Jung, Sang-Joong;Kwon, Tae-Ha;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.76-83
    • /
    • 2013
  • A real-time wireless monitoring and analysis methods using the wearable PPG sensor to estimate cardiovascular condition is studied for ubiquitous healthcare service. A small size and low-power consuming wearable photoplethysmogram (PPG) sensor is designed as a wrist type device and connected with the IP node assigned its own IPv6 address. The measured PPG waveform in the IP node is collected and transferred to a central server PC through the IP-enabled wireless network for storage and analysis purposes. A monitoring and analysis program is designed to process the accelerated plethysmogram (APG) waveform by applying the second order derivatives to analyze systolic waves as well as heart rate variability analysis from the measured PPG waveform. From our results, the features of cardiovascular condition from individual's PPG waveform and estimation of vascular compliance by the comparison of APG-aging index (AI) and ratio of LF/HF are demonstrated.

Ship Detection Using Edge-Based Segmentation and Histogram of Oriented Gradient with Ship Size Ratio

  • Eum, Hyukmin;Bae, Jaeyun;Yoon, Changyong;Kim, Euntai
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.251-259
    • /
    • 2015
  • In this paper, a ship detection method is proposed; this method uses edge-based segmentation and histogram of oriented gradient (HOG) with the ship size ratio. The proposed method can prevent a marine collision accident by detecting ships at close range. Furthermore, unlike radar, the method can detect ships that have small size and absorb radio waves because it involves the use of a vision-based system. This system performs three operations. First, the foreground is separated from the background and candidates are detected using Sobel edge detection and morphological operations in the edge-based segmentation part. Second, features are extracted by employing HOG descriptors with the ship size ratio from the detected candidate. Finally, a support vector machine (SVM) verifies whether the candidates are ships. The performance of these methods is demonstrated by comparing their results with the results of other segmentation methods using eight-fold cross validation for the experimental results.