• Title/Summary/Keyword: Electronic safety

Search Result 1,523, Processing Time 0.028 seconds

The Characteristics of Charging Water Spray at Electrostatic Precipitator

  • Chung, J.H.;Kanazawa, S.;Ohkubo, T.;Nomoto, Y.;Adachi, T.
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.4
    • /
    • pp.132-136
    • /
    • 1994
  • The new spray system is proposed by using a pipe with hygroscopic needle electrode In order to develop an air-cleaning ESP with high collection efficiency for submicron particles and high removal efficiency for NOx, SO$_2$, NH$_3$. Fundamental characteristics of charging water spray, which is not an usual wet type, are investigated experimentally. As a result, corona discharging mode and ozone generation rate are significantly affected by the operational conditions, such as the applied voltage and wet condition of the needle electrode.

  • PDF

Design of PESSRAE To Achieve Safety Integrity With FMEDA Analysis (안전무결성을 달성하기 위한 FMEDA 분석 기반 PESSRAE 설계)

  • Heo, Jeho;Kim, Gi-bong;Jung, Gi-Hyun;An, Seokchan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.3
    • /
    • pp.157-165
    • /
    • 2022
  • As the number of the installed escalators in Korea continues to increase, the accident rate is also increasing. Therefore, it would be necessary to proactively secure safety. PESSRAE is a controller that implements safety functions as electric/electronic/programmable electronic devices to respond to risks that may occur in escalators. Safety Integrity Level (SIL) is assigned to the safety functions of PESSRAE and it must be verified that the quantitative target value according to the SIL level is satisfied. In this paper, the initial PESSRAE is analyzed using the FMEDA (Failure Mode, Effects and Diagnostic Analysis), which is a quantitative safety analysis method, and design improvement specifications are derived from the analysis in order to satisfy the quantitative target values. Based on the derived design specifications, the improved PESSRAE controller was manufactured. And the appropriateness of the design was verified experimentally in a testbed environment simulating the real environment.

Safety-Related Equipment Classification for Maintenance Purposes with Risk Measures

  • Park, Byoung-Chul;Kwon, Jong-Jooh;Cho, Sung-Hwan
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.838-843
    • /
    • 1998
  • Risk importance measures are widely wed to rank risk contributors in risk-based applications. Typically, Fussell-Vesely (F-V) importance and risk achievement worth (RAW) are used in the component importance raking for the reliability centered maintenance (RCM) analysis of safety system in nuclear power plants (NPPs). This study was performed as part of feasibility study on RCM for domestic NPPs, which is focused on the component importance ranking approach the maintenance recommendation. The approach of modulizing faulting tree basic events was applied in the simplification process of the PSA model and the validity of the approach was evaluated As a result of the case study, this paper included the importance and the maintenance recommendations for the safety-related equipments associated with safety injection and containment spray in large loss of coolant accident sequences.

  • PDF

Dynamics Parameter' Graphs of Passenger Planes

  • Aksoz, Ahmet;Dursun, Mahir;Saygin, Ali
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.1
    • /
    • pp.31-37
    • /
    • 2015
  • Passenger plane flying motion graphics is very important for route, control of the flight altitude and passenger safety. For all that, it is quite useful for route away from the disruptive influences such as vibrations caused by storms or turbulence during the flight and in processes such as re-arrest of the specified route. Therefore, the response time against the adverse effects of the shape and the system is so necessary for both safety and comfort. In this study motion and route graphics were obtained under the control of an airliner C # interface with the program. In this way, graphics were obtained in solving the equations of motion in short time and design time was shortened.

erratum : A Study on Developing Safety and Performance Assessment Guideline for Electronic Warm-Acupuncture Apparatus (erratum : 전기식 온침기에 대한 안전성 및 성능평가 가이드라인 개발 연구)

  • Hansol Jang;U-Ryeong Chung;Jeong-Hyun Moon;Seong-Kyeong Choi;Won-Suk Sung;Min-Seop Hwang;Seung-Deok Lee;Kyung-Ho Kim;Jong-Hwa Yoon;Eun-Jung Kim
    • The Journal of Korean Medicine
    • /
    • v.44 no.1
    • /
    • pp.128-128
    • /
    • 2023
  • Objectives: This research aimed to develop a guideline for evaluating safety and performance of electronic warm-acupuncture apparatus. With the development of medical devices like electronic warm-acupuncture apparatus with improved performance, convenience and safety measures compared to traditional warm-acupuncture needling, safety and performance guideline is a necessity. Methods: By referring to existing standards and guidelines of other electronic devices for Korean medicine with heating function, guideline for safety and performance assessment of electronic warm-acupuncture apparatus was drafted Results: The guideline, presents explanation for adequate temperature and settings of the apparatus, and safety measurements providing against thermal runaway situations along with guidelines for the manual. Guideline for detailed test method for the performance of the apparatus such as accuracy of temperature increase and the timer, and safety unit was also provided. The test items and suggested test methods for the requirements of biological, electrical and electromagnetic safety were referred to Korean approval documents of ministry of Food and Drug Safety. Conclusion: We proposed the relevant items to verify performance and safety of warm-acupuncture apparatus to assure patient safety and improve the quality of currently developing devices for application in clinical field.

Structural Vibration Analysis of Electronic Equipment for Satellite under Launch Environments (발사환경에 대한 위성 전장품의 구조진동 해석)

  • 정일호;박태원;한상원;서종휘;김성훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.120-128
    • /
    • 2004
  • The impulse between launch vehicle and atmosphere can generate a lot of noise and vibration during the process of launching a satellite. Structurally, the electronic equipment of a satellite consists of an aluminum case containing PCB. Each PCB has resistors and IC. Noise and vibration of the wide frequency band are transferred to the inside of fairing, subsequently creating vibration of the electronic equipment of the satellite. In this situation, random vibration can cause malfunctioning of the electronic equipment of the device. Furthermore, when the frequency of random vibration meets with natural frequency of PCB, fatigue fracture may occur in the part of solder joint. The launching environment, thus, needs to be carefully considered when designing the electronic equipment of a satellite. In general, the safety of the electronic equipment is supposed to be related to the natural frequency, shapes of mode and dynamic deflection of PCB in the electronic equipment. Structural vibration analysis of PCB and its electronic components can be performed using either FEM or vibration test. In this study, the natural frequency and dynamic deflection of PCB are measured by FEM, and the safety of the electronic components of PCB is evaluated according to the results. This study presents a unique method for finite element modeling and analysis of PCB and its electronic components. The results of FEA are verified by vibration test. The method proposed herein may be applicable to various designs ranging from the electronic equipments of a satellite to home electronics.

Case Study on AUTOSAR Software Functional Safety Mechanism Design: Shift-by-Wire System (AUTOSAR 소프트웨어 기능안전 메커니즘 설계 사례연구: Shift-by-Wire 시스템)

  • Kum, Daehyun;Kwon, Soohyeon;Lee, Jaeseong;Lee, Seonghun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.6
    • /
    • pp.267-276
    • /
    • 2021
  • The automotive industry and academic research have been continuously conducting research on standardization such as AUTOSAR (AUTomotive Open System ARchitecture) and ISO26262 to solve problems such as safety and efficiency caused by the complexity of electric/electronic architecture of automotive. AUTOSAR is an automotive standard software platform that has a layered structure independent of MCU (Micro Controller Unit) hardware, and improves product reliability through software modularity and reusability. And, ISO26262, an international standard for automotive functional safety and suggests a method to minimize errors in automotive ECU (Electronic Control Unit)s by defining the development process and results for the entire life cycle of automotive electrical/electronic systems. These design methods are variously applied in representative automotive safety-critical systems. However, since the functional and safety requirements are different according to the characteristics of the safety-critical system, it is essential to research the AUTOSAR functional safety design method specialized for each application domain. In this paper, a software functional safety mechanism design method using AUTOSAR is proposed, and a new failure management framework is proposed to ensure the high reliability of the product. The AUTOSAR functional safety mechanism consists of memory partitioning protection, timing monitoring protection, and end-to-end protection. The fault management framework is composed of several safety SWCs to maintain the minimum function and performance even if a fault occurs during the operation of a safety-critical system. Finally, the proposed method is applied to the Shift-by-Wire system design to prove the validity of the proposed method.

Efficient Approaches of Functional Safety for Medical Equipment using Essential Performance Analysis (필수성능 분석을 통한 효율적인 의료기기 기능안전 접근 방안)

  • Kim, Gi-Young;Yoo, Ki-Hoon;Park, Ho-Joon;Jang, Joong-Soon
    • Journal of Applied Reliability
    • /
    • v.15 no.1
    • /
    • pp.27-32
    • /
    • 2015
  • Functional safety is part of the overall safety relating to the equipment under control (EUC) and the EUC control system that depends on the correct functioning of the electrical/electronic/programmable electronic (E/E/PE) safety-related systems. Since the complexity of the medical equipment is increased, manufactures have to obtain functional safety as well as basic safety. This study proposes a perspective for applying functional safety to medical equipment. The research is carried out with respect to overall safety life-cycle of functional safety and essential performance of the medical equipment. The relationship between functional safety and essential performance is identified centered on the safety function. The essential performance using E/E/PE systems is defined as a safety function of functional safety. This approach is applied to a ultrasound imaging system as a case study.

Reliability prediction of electronic components on PCB using PRISM specification (PRISM 신뢰성 예측규격서를 이용한 전자부품(PCB) 신뢰도 예측)

  • Lee, Seung-Woo;Lee, Hwa-Ki
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.3
    • /
    • pp.81-87
    • /
    • 2008
  • The reliability prediction and evaluation for general electronic components are required to guarantee in quality and in efficiency. Although many methodologies for predicting the reliability of electronic components have been developed, their reliability might be subjective according to a particular set of circumstances, and therefore it is not easy to quantify their reliability. In this study reliability prediction of electronic components, that is the interface card, which is used in the CNC(Computerized Numerical Controller) of machine tools, was carried out using PRISM reliability prediction specification. Reliability performances such as MTBF(Mean Time Between Failure), failure rate and reliability were obtained, and the variation of failure rate for electronic components according to temperature change was predicted. The results obtained from this study are useful information to consider a counter plan for weak components before they are used.

Electronic Document Automation System Model for Improving Productivity in maintenance work - in Inspection Process of Construction Equipment Maintenance - (정비작업의 생산성 향상을 위한 전자문서자동화시스템 모형 - 건설장비 정비작업을 중심으로 -)

  • Kong, Myung-Dal
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.3
    • /
    • pp.49-58
    • /
    • 2017
  • This paper suggests a specific model that could efficiently improve the interaction and the interface between MES(Manufacturing Execution System) server and POP(Point of Production) terminal through electronic document server and electronic pen, bluetooth receiver and form paper in disassembly and process inspection works. The proposed model shows that the new method by electronic document automation system can more efficiently perform to reduce processing time for maintenance work, compared with the current approach by handwritten processing system. It is noted in case of the method by electronic document automation system that the effects of proposed model are as follows; (a) While the processing time per equipment for maintenance by the current method was 300 minutes, the processing time by the new method was 50 minutes. (b) While the processing error ratio by the current method was 20%, the error ratio by the new method was 1%.