• Title/Summary/Keyword: Electronic encapsulation

Search Result 64, Processing Time 0.023 seconds

The Effect of Low-Temperature Carbon Encapsulation on Si Nanoparticles for Lithium Rechargeable Batteries

  • Jung, Jaepyeong;Song, Kyeongse;Kang, Yong-Mook
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2162-2166
    • /
    • 2013
  • The tailored surface modification of electrode materials is crucial to realize the wanted electronic and electrochemical properties. In this regard, a dexterous carbon encapsulation technique can be one of the most essential preparation methods for the electrode materials for lithium rechargeable batteries. For this purpose, DL-malic acid ($C_4H_6O_5$) was here used as the carbon source enabling an amorphous carbon layer to be formed on the surface of Si nanoparticles at enough low temperature to maintain their own physical or chemical properties. Various structural characterizations proved that the bulk structure of Si doesn't undergo any discernible change except for the evolution of C-C bond attributed to the formed carbon layer on the surface of Si. The improved electrochemical performance of the carbon-encapsulated Si compared to Si can be attributed to the enhanced electrical conductivity by the surface carbon layer as well as its role as a buffering agent to absorb the volume expansion of Si during lithiation and delithiation.

Synthesis, Curing and Properties of Silicone-Epoxies

  • Huang, Wei;Yuan, Youxue;Yu, Yunzhao
    • Journal of Adhesion and Interface
    • /
    • v.7 no.4
    • /
    • pp.39-44
    • /
    • 2006
  • A new kind of silicone-epoxy composite is reported in this research. The silicone-epoxy resin was synthesized by the hydrosilylation of tetramethycyclotetrasiloxane and 4-vinyl-1-cyclohexene 1,2-epoxy with a high reaction yield. It was found that the obtained silicone-epoxy resin shows a high reactive activity to the aluminum complex-silanol catalyst. The resin could be cured under the catalysis of $(Al(acac)_3/Ph_2Si(OH)_2$ at a concentration below 0.1 wt% to give a hard cured resin showing excellent optical clarity, UV resistance and thermal stability. It was also found that the Si-H groups facilitated the curing reaction and the silicone-epoxy resin bearing Si-H group could be cured effectively even if $Ph_2Si(OH)_2h$ was absent. Moreover, the UV resistance and thermal stability were improved significantly by the introduction of Si-H groups. This is possibly due to the reductive property of Si-H groups which can annihilate radical and peroxide effectively. This kind of silicone-containing epoxy composite might have very promising applications as optical resin, optical adhesive and encapsulation materials for electronic devices.

  • PDF

Ytterbium Test for Water Vapor Transmission Rate Measurement of Passivation Film for Organic Electronics (유기 전자 소자의 봉지막 투습도 분석을 위한 Ytterbium Test)

  • Lim, Young-Ji;Lee, Jae-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.484-487
    • /
    • 2018
  • In this paper, the optical and electrical properties of ytterbium films were studied for water vapor transmission rate (WVTR) analysis of encapsulation films used in organic electronic devices. Ytterbium thin films show a wide range of light transmittance (70-10%) and resistivity ($6.0-0.16m{\Omega}{\cdot}cm$) depending on various film thicknesses (20-100 nm). The Yb thin films were oxidized with moisture and its transmittance and resistance changed in real time. As a result, the WVTR of parylene and aluminum nitride (AlN) laminated thin encapsulation film was measured to be $4.3{\times}10^{-3}g/m^2{\cdot}day$ with the 25 nm thick ytterbium thin film.

3D Printed Electronics Research Trend (3차원 인쇄기술을 이용한 전자소자 연구 동향)

  • Park, Yea-Seol;Lee Ju-Yong;Kang, Seung-Kyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.1-12
    • /
    • 2021
  • 3D printing, which designs product in three dimensions, draws attention as a technology that will lead the future for it dramatically shortens time for production without assembly, no matter how complex the structure is. The paper studies the latest researches of 3D-printed electronics and introduces papers studied electronics components, power supply, circuit interconnection and 3D-printed PCBs' applications. 3D-printed electronics showed possibility to simplify facilities and personalize electric devices by providing one-stop printing process of electronic components, soldering, stacking, and even encapsulation.

Vacuum Packaging and Operating Properties of Micro-Tunneling Sensors

  • Park, H.W.;Lee, D.J.;Son, Y. B.;Park, J.H.;Oh, M. H.;Ju, B. K.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.04a
    • /
    • pp.110-110
    • /
    • 2000
  • Cantilever-shaped lateral field emitters were fabricated and their electrical characteristics were tested. As shown in Fig.1, poly-silicon cantilevers were fabricated by the surface micromachining and they were used to the vacuum magnetic field sensors. The tunneling devices were vacuum sealed with the tubeless packaging method, as shown in Fig.2 and Fig.3. The soda-lime glasses were used for better encapsulation, so the sputtered silicon and the glass layers on the soda-lime glasses were bonded together at 1x10$^{-6}$ Torr. The getter was activated after the vacuum sealing fur the stable emissions. The devices were tested outside of the vacuum chamber. Through vacuum packaging, the tunneling sensors can be utilized. Fig.4 shows that the sensor operates with the switching of the magnetic field. When the magnetic field was applied to the device, the anode currents were varied by the Lorentz force. The difference of anode currents can be varied with the strength of the applied magnetic field.

  • PDF

Application of Si3N4 Thin Film as a Humidity Protection Layer for Organic Light Emitting Diode (Si3N4 박막의 유기발광소자 수분침투 방지막으로의 응용)

  • Kim, Chang-Jo;Shin, Paik-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.5
    • /
    • pp.397-402
    • /
    • 2010
  • In this paper, we studied WVTR(water vapor transmission rate) properties of $Si_3N_4$ thin film that was deposited using TCP-CVD (transformer coupled plasma chemical vapor deposition) method for the possibility of OLED(organic light emitting diode) encapsulation. Considering the conventional OLED processing temperature limit of below $80^{\circ}C$, the $Si_3N_4$ thin films were deposited at room temperature. The $Si_3N_4$ thin films were prepared with the process conditions: $SiH_4$ and $N_2$, as reactive gases; working pressure below 15 mTorr; RF power for TCP below 500 W. Through MOCON test for WVTR, we analyzed water vapor permeation per day. We obtained that WVTR property below 6~0.05 gm/$m^2$/day at process conditions. The best preparation condition for $Si_3N_4$ thin film to get the best WVTR property of 0.05 gm/$m^2$/day were $SiH_4:N_2$ gas flow rate of 10:200 sccm, working pressure of 10 mTorr, working distance of 70 mm, TCP power of 500 W and film thickness of 200 nm. respectively. The proposed results indicates that the $Si_3N_4$ thin film could replace metal or glass as encapsulation for flexible OLED.

Fabrication of Polymer Composite with Enhanced Insulation and Mechanical Properties using Aluminum Borate Nanowhiskers (알루미늄 보레이트 나노휘스커를 이용한 향상된 절연성 및 기계적 특성을 가지는 고분자 복합체 제작)

  • Junhyeok Choi;Sangin Lee;Kiho Song;Taekyung Kim;Changui Ahn
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.356-362
    • /
    • 2023
  • Inorganic-organic composites find extensive application in various fields, including electronic devices and light-emitting diodes. Notably, encapsulation technologies are employed to shield electronic devices (such as printed circuit boards and batteries) from stress and moisture exposure while maintaining electrical insulation. Polymer composites can be used as encapsulation materials because of their controllable mechanical and electrical properties. In this study, we propose a polymer composite that provides good electrical insulation and enhanced mechanical properties. This is achieved by using aluminum borate nanowhiskers (ABOw), which are fabricated using a facile synthesis method. The ABOw fillers are created via a hydrothermal method using aluminum chloride and boric acid. We confirm that the synthesis occurs in various morphologies based on the molar ratio. Specifically, nanowhiskers are synthesized at a molar ratio of 1:3 and used as fillers in the composite. The fabricated ABOw/epoxy composites exhibit a 48.5% enhancement in mechanical properties, similar to those of pure epoxy, while maintaining good electrical insulation.

Design and Fabrication of SiO2/TiO2 Multi Layer Thin Films on Silicon Encapsulation of LED Deposited by E-beam Evaporation for NIR Narrow Band Pass Filter Application (NIR 협대역 투과 필터 응용을 위한 LED 실리콘 봉지재 위에 직접 E-beam으로 증착 된 SiO2/TiO2 다층 박막 설계 및 제작)

  • Kim, Dong Pyo;Kim, Kyung-Seob;Kim, Goo-Cheol;Jeong, Jung-Chae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.2
    • /
    • pp.165-171
    • /
    • 2022
  • The SiO2/TiO2 multilayer thin films used for narrow band pass filter were fabricated using E-beam evaporation method. The narrow band pass filter was used to enhance the resolution of spectroscopy and sensor applications with near infrared (NIR) light source. The narrow band pass filter with multilayer thin films were designed with Essential Macleod program. The multilayers of SiO2/TiO2 with 32 layers were deposited on the silicon encapsulation of IR with peak wavelength (λp) of 660 nm and NIR LEDs with λp of 830 nm, 880 nm, and 955 nm. After NIR light passed through the narrow band pass filter, the full width of half maximum of 33.4~48.6 nm became narrow to 20~24 nm owing to the absorption of photons with short or long wavelength of designed band of 20 nm. The SiO2/TiO2 band pass filter fabricated in this study can be used for sensor, optoelectronics, and NIR spectroscopy applications.

Real-Time Marine Vehicle Management System (실시간 선박관리 시스템)

  • Syan, Lim Chia;Park, Soo-Hong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.7
    • /
    • pp.995-1002
    • /
    • 2013
  • In this paper, an effort has been made to design a Real-time Ship Management System where the status of a ship and its surrounding are constantly monitored and recorded at the base station. Proprietary system message based on overhead and checksum encapsulation has been designed to facilitate the communication. Software encoder and decoder are developed independently for each communication device attached to the system to process the proprietary system message into format by device standard. In addition, few configurations are designed to determine the method of updating the ship status message to the base station, which could be remotely chosen by the administrator.

Properties of Y-Ba-Cu-O high Tc superconductor with fabricating processes (Y-Ba-Cu-O계 고온 초전도체의 제조공정에 따르는 물성)

  • 김종문;백수현
    • Electrical & Electronic Materials
    • /
    • v.3 no.3
    • /
    • pp.215-223
    • /
    • 1990
  • Y-Ba-Cu-O계 고온 초전도체를 소결, 소결+HIP encapsulation방법으로 각각 제작하였다. 소결은 900.deg.C~960.deg.C에서 하였으며 소결시편의 일부는 HIP처리 하였는데 이때 HIP조건은 150MPa Ar압력에서 800.deg.C, 30min이었다. HIP시편의 상대밀도는 90%~93%의 밀도를 갖는 소결시편보다 5%~8% 증가하였다. 열처리 조건에 따른 x-ray 회절분석은 사방정-정방정 상변태를 보여주었다. 임계온도(Tc)는 91.deg.k 에서 전기비정항이 급격히 감소하기 시작하여 89.deg.k에서 완전히 0이 되었으며 전이폭은 3.deg.k내로 매우 좁았다. 임계전류밀도(Jc)는 소결시편의 경우 전형적인 ~159A/$cm^{2}$의 값을 보였으나 HIP처리 후 ~89A/$cm^{2}$로 감소했기 때문이라 생각하였다. 경도와 인성은 각각 38GPa과 2.9MPam$^{1}$2/로 증가하였다.

  • PDF