• 제목/요약/키워드: Electronic encapsulation

검색결과 64건 처리시간 0.021초

고분자 기판의 휨 스트레스에 대한 Encapsulation층의 효과 (The Effect of Encapsulation Layer Incorporated into Polymer Substrates for Bending Stress)

  • 박준백;서대식;이상극;이준웅;김영훈;문대규;한정인
    • 한국전기전자재료학회논문지
    • /
    • 제17권4호
    • /
    • pp.443-447
    • /
    • 2004
  • In this study, we investigated the necessity of encapsulation layer to maximize flexibility of brittle indium-tin-oxide (ITO) on polymer substrates. And, Young's modulus (E) of encapsulation layer han a significant effect on external bending stress and the coefficient of thermal expansion (CTE) of that han a significant effect on internal thermal stress. To compare the magnitude of total mechanical stress including both bending stress and thermal stress, the mechanical stress of triple-layer structure (substrate / ITO / encapsulation layer or substrate / buffer layer / ITO) can be quantified and numerically analyzed through the farthest cracked island position. As a result, it should be noted that multi-layer structures with more elastic encapsulation material have small mechanical stress compared to that of buffer and encapsulation structure of large Young's modulus material when they were externally bent.

A DFT Study on Alkali and Alkaline Earth Metal Encapsulated Fullerene-Like BeO Cluster

  • Ravaei, Isa;Beheshtian, Javad
    • 대한화학회지
    • /
    • 제61권6호
    • /
    • pp.311-319
    • /
    • 2017
  • By using Density Functional Theory (DFT), we have performed alkali metal and alkaline earth metal inside fullerene-like BeO cluster (FLBeOC) in terms of energetic, geometric, charge transfer, work function and electronic properties. It has been found that encapsulated processes of the alkali metal are exothermic and thermodynamically more favorable than alkaline earth metal encapsulation, so that interaction energy ($E_{int}$) of the alkali metal encapsulation FLBeOC is in the range of -0.02 to -1.15 eV at level of theory. It is found that, the electronic properties of the pristine fullerene-like BeO cluster are much more sensitive to the alkali metal encapsulation in comparison to alkaline earth metal encapsulation. The alkali and alkaline earth metal encapsulated fullerene-like BeO cluster systems exhibit good sensitivity, promising electronic properties which may be useful for a wide variety of next-generation nano-sensor device components. The encapsulation of alkali and alkali earth metal may increase the electron emission current from the FLBeOC surface by reducing of the work function.

Flexible 기판의 Bending Stress에 대한 Encapsulation Layer의 영향 (The Influence of Encapsulation Layer Incorporated into Flexible Substrates for Bending Stress)

  • 박준백;서대식;이상극;이준웅;김영훈;문대규;한정인
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.473-476
    • /
    • 2003
  • This paper shows necessity of encapsulation layer to maximite flexibility of brittle indium-tin-oxide (ITO) on polymer substrates. And, Young's modulus (E) of encapsulation layer have an significant effect on external bending stress and the coefficient of thermal expansion (CTE) of that have a significant effect on internal thermal stress. To compare magnitude of total mechanical stress including both bending stress and thermal stress, the mechanical stress of triple-layer structure (substrate / ITO / encapsulation layer or substrate / buffer layer / ITO) can be quantified and numerically analyzed through the farthest cracked island position. As a result, it should be noted that multi-layer structures with more elastic encapsulation material have small mechanical stress compared to that of buffer and encapsulation structure of large Young's modulus material when they were externally bent.

  • PDF

Electronic Paper Device 적용을 위한 $TiO_2$ 나노입자의 폴리머 Encapsulation (Polymer Encapsulation of $TiO_2$ Nanoparticle for Electronic Paper Device)

  • 권순형;김세기;홍완식;안진호;김선재
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.2
    • /
    • pp.991-994
    • /
    • 2003
  • Electronic Paper용 무기소재로 $TiO_2$ 나노입자를 적용하기 위해서는 분산시 침전문제, 입자의 전기영동 속도향상을 위한 충분한 $\xi-potential$확보, 분산제 첨가시 안정적 결합을 위한 acidic site의 확보등의 문제가 해결되어야 한다. 이를 위해 저온균일침전법으로 $TiO_2$ 나노입자를 제조하였고, 폴리머 체인을 통하여 encapsulation하여 최적의 분산과 전기영동조건 확보를 위한 공정조건에 대해 연구하였다. 실험결과 다양한 분산매에 계면활성제를 1.0wt% 첨가시 유전율상수가 2.5인 분산매에서 가장 좋은 $\xi-potential$을 얻을 수 있었으며 이를 바탕으로 acidic site에 따른 폴리머 체인의 흡착실험 결과 pH $1{\sim}2$의 조건에서 제조된 $TiO_2$ 나노입자의 경우가 체인과의 흡착정도가 가장 좋아 분산특성을 향상시킬 수 있었다.

  • PDF

PMOLED의 수명향상을 위한 단일박막구조의 봉지기술에 관한 연구 (A Study on Improvement Lifetime of Passive Matrix Organic Light Emitting Diode using Single Layer Thin Film)

  • 기현철;김선훈;김두근;김효진;김회종;홍경진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.282-283
    • /
    • 2009
  • In the research, we have proposed a novel encapsulation with simple process and steady film for external environment in comparison with conventional encapsulation method. This was designed to cover the emitting organic material from air. Silicon 야oxide was used for thin film of encapsulation and the deposition thickness of the organic film was 220 nm. Operating voltage of green OLED with encapsulation was 5.5 V and luminance was 7.370 cd/$m^2$ at the applied voltage of 14.5 V. Luminance was measured in 10 hour intervals at the air-exposed condition. After 110 hours and 300 hours, luminances of green OLED were 7,368 and 7,367 cd/$m^2$, respectively. Luminance of green JLED doesn't decrease until 300 hours. As a results, proposed encapsulation can increase the life time of green OLED.

  • PDF

평판 유리로 봉인된 다층 무기 박막을 갖는 OLED 봉지 방법 (Encapsulation Method of OLED with Inorganic Multi-layered Thin Films Sealed with Flat Glass)

  • 박민경;주성후;양재웅;백경갑
    • 한국전기전자재료학회논문지
    • /
    • 제24권11호
    • /
    • pp.905-910
    • /
    • 2011
  • To study encapsulation method for large-area organic light emitting diodes (OLEDs), red emitting OLEDs were fabricated, on which LiF and Al were deposited as inorganic protective films. And then the OLED was attached to flat glass by printing method using epoxy. In case of direct coating of epoxy onto OLED by printing method, luminance and current efficiency were remarkably decreased because of the damage to the OLED by epoxy. In case of depositing LiF and Al as inorganic protective films and then coating of epoxy onto OLED, luminance and current efficiency were not changed. OLED lifetime was more increased through inorganic protective films between OLED and flat glass than that without any encapsulation (8.8 h), i.e., 47 (LiF/Al/epoxy/glass), 62 (LiF/Al/LiF/epoxy/glass), and 84 h (LiF/Al/Al/epoxy/glass). The characteristics of OLED encapsulated with inorganic protective films (attached to flat glass) showed the possibility of application of protective films.

고분자 기판위에 유기 용매를 사용하지 않은 다층 박막 Encapsulation 기술 개발 (Improvement of Permeation of Solvent-free Multi-layer Encapsulation of Thin Films on Polyethylene Terephthalate (PET))

  • 한진우;강희진;김종연;서대식
    • 한국전기전자재료학회논문지
    • /
    • 제19권8호
    • /
    • pp.754-757
    • /
    • 2006
  • The inorganic multi-layer thin film encapsulation was newly adopted to protect the organic layer from moisture and oxygen. Using the electron beam, sputter, inorganic multi-layer thin-film encapsulation was deposited onto the Polyethylene Terephthalate (PET) and their interface properties between inorganic and organic layer were investigated. In this investigation, the SiON, $SiO_2$ and parylene layer showed the most suitable properties. Under these conditions, the WVTR for PET can be reduced from level of $0.57g/m^2/day$ (bare subtrate) to $1*10^{-5}g/m^2/day$ after application of a SiON and $SiO_2$ layer. These results indicates that the $PET/SiO_2/SiON/Parylene$ barrier coatings have high potential for flexible organic light-emitting diode(OLED) applications.

트랜지언트 전자소자 및 생분해성 봉지막 기술 (Transient Electronics and Biodegradable Encapsulation Technologies)

  • 문준민;강승균
    • 마이크로전자및패키징학회지
    • /
    • 제28권2호
    • /
    • pp.13-28
    • /
    • 2021
  • 트랜지언트 전자소자는 전해질 수용액이나 체내와 같은 거친 환경에서도 작동이 가능하며 동작 이후 가수분해되어 스스로 제거되기 때문에 기존의 전자소자를 대체하여 의료 목적의 체내 삽입 소자 등 다양한 연구 영역에서 활용되고 있다. 또한 물과 효소만으로 제거가 가능한 트랜지언트 전자소자는 최근 대두되고 있는 전자 쓰레기와 환경 오염 문제를 해결할 수 있는 신개념 그린 테크놀로지로 많은 주목을 받고 있다. 하지만, 트랜지언트 전자소자의 작동 환경인 수용액과 체내는 지속적은 물 침투를 통해 소자 내 핵심 부품을 열화시킨다. 이러한 환경 내 안정한 동작을 위하여 수동적 보호 기능을 가진 피막이 소자 외부를 감싸는 봉지막 전략이 도입되었다. 본 논문에서는 트랜지언트 전자소자의 등장 배경과 분해 거동을 포함한 최근 연구 동향과 작동 환경 내 물 침투를 방지하여 동작 신뢰도를 향상시킬 수 있는 봉지막 전략에 관하여 정리하였다.

열간 정수압 소결(HIP)에 의한 Y-Ba-Cu-O계rhdhs 초전도체의 제작 및 특성 (Properties of Y-Ba-Cu-O High Tc superconductor prepared by sintering, sintering+HIP encapsulation)

  • 김종문;백수현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1988년도 추계학술대회 논문집
    • /
    • pp.36-40
    • /
    • 1988
  • High TC Y-Ba-Cu-O Superconductors were fabricated by sintering, sinter+HIP encapsulation. Specimens were sintered at 920$^{\circ}C$∼960$^{\circ}C$. A part of sintered specimens were treated by HIP, and HIP conditions were 150 MPa, 880$^{\circ}C$, 30min under the Ar atmosphere. The relative density of HIP specimens was increased 5∼8% in comparison with sintered one(90∼93% relative density). X-ray analysis represented the orthorhobic-tetragonal phase transition with annealing condition. Tc measurements showed a sharp drp within 3$^{\circ}C$, 91K onset and 89K offset. Transport current density(Jc) of sintered specimens showed typically∼159A/㎤ but that of sinter+HIP encapsulation was decreased to∼89A/㎤ because of insufficient oxygen diffusion, Hardness(H) and Toughness(Kc) were increased to 38GPa; and 2.9 MPam$\^$$\frac{1}{2}$/, respectively.

  • PDF

전도성 CNT 박막의 온도에 따른 저항 변화도 연구 (Temperature-dependent Resistance Change of Conductive CNT Thin-film)

  • 권민규;홍용택
    • 한국전기전자재료학회논문지
    • /
    • 제22권2호
    • /
    • pp.151-157
    • /
    • 2009
  • This paper reports the resistance change of conductive carbon nanotube (CNT) thin-films according to the temperature variation. Resistance of conductive CNT thin-films intrinsically has good thermal sensitivity, but shows environmental dependency. In order to reduce environmental effects, we spin-coated polydimethylsiloxane (PDMS) on the conductive CNT thin-films. We observed that conductive CNT thin-films with a PDMS encapsulation layer showed little environmental dependency, but more linear and stable temperature dependencies. If proper encapsulation is provided, conductive CNT thin-films can be used for temperature sensor applications.