• Title/Summary/Keyword: Electronic devices

Search Result 4,580, Processing Time 0.034 seconds

Nano-scale Design of electrode materials for lithium rechargeable batteries

  • Gang, Gi-Seok
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.72-72
    • /
    • 2012
  • Lithium rechargeable batteries have been widely used as key power sources for portable devices for the last couple of decades. Their high energy density and power have allowed the proliferation of ever more complex portable devices such as cellular phones, laptops and PDA's. For larger scale applications, such as batteries in plug-in hybrid electric vehicles (PHEV) or power tools, higher standards of the battery, especially in term of the rate (power) capability and energy density, are required. In PHEV, the materials in the rechargeable battery must be able to charge and discharge (power capability) with sufficient speed to take advantage of regenerative braking and give the desirable power to accelerate the car. The driving mileage of the electric car is simply a function of the energy density of the batteries. Since the successful launch of recent Ni-MH (Nickel Metal Hydride)-based HEVs (Hybrid Electric Vehicles) in the market, there has been intense demand for the high power-capable Li battery with higher energy density and reduced cost to make HEV vehicles more efficient and reduce emissions. However, current Li rechargeable battery technology has to improve significantly to meet the requirements for HEV applications not to mention PHEV. In an effort to design and develop an advanced electrode material with high power and energy for Li rechargeable batteries, we approached to this in two different length scales - Atomic and Nano engineering of materials. In the atomic design of electrode materials, we have combined theoretical investigation using ab initio calculations with experimental realization. Based on fundamental understanding on Li diffusion, polaronic conduction, operating potential, electronic structure and atomic bonding nature of electrode materials by theoretical calculations, we could identify and define the problems of existing electrode materials, suggest possible strategy and experimentally improve the electrochemical property. This approach often leads to a design of completely new compounds with new crystal structures. In this seminar, I will talk about two examples of electrode material study under this approach; $LiNi_{0.5}Mn_{0.5}O_2$ based layered materials and olivine based multi-component systems. In the other scale of approach; nano engineering; the morphology of electrode materials are controlled in nano scales to explore new electrochemical properties arising from the limited length scales and nano scale electrode architecture. Power, energy and cycle stability are demonstrated to be sensitively affected by electrode architecture in nano scales. This part of story will be only given summarized in the talk.

  • PDF

SnO2 Nanowire Networks on a Spherical Sn Surface: Synthesis and NO2 sensing properties (구형 Sn 표면의 SnO2 나노와이어 네트워크: 합성과 NO2 감지 특성)

  • Pham, Tien Hung;Jo, Hyunil;Vu, Xuan Hien;Lee, Sang-Wook;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.142.2-142.2
    • /
    • 2018
  • One-dimensional metal oxide nanostructures have attracted considerable research activities owing to their strong application potential as components for nanosize electronic or optoelectronic devices utilizing superior optical and electrical properties. In which, semiconducting $SnO_2$ material with wide-bandgap Eg = 3.6 eV at room temperature, is one of the attractive candidates for optoelectronic devices operating at room temperature [1, 2], gas sensor [3, 4], and transparent conducting electrodes [5]. The synthesis and gas sensing properties of semiconducting $SnO_2$ nanomaterials have become one of important research issues since the first synthesis of SnO2 nanowires. In this study, $SnO_2$ nanowire networks were synthesized on a basis of a two-step process. In step 1, Sn spheres (30-800 nm in diameter) embedded in $SiO_2$ on a Si substrate was synthesized by a chemical vapor deposition method at $700^{\circ}C$. In step 2, using the source of these Sn spheres, $SnO_2$ nanowire (20-40 nm in diameter; $1-10{\mu}m$ in length) networks on a spherical Sn surface were synthesized by a thermal oxidation method at $800^{\circ}C$. The Au layers were pre-deposited on the surface of Sn spherical and subsequently oxidized Sn surface of Sn spherical formed SnO2 nanowires networks. Field emission scanning electron microscopy and high-resolution transmission electron microscopy images indicated that $SnO_2$ nanowires are single crystalline. In addition, the $SnO_2$ nanowire is also a tetragonal rutile, with the preferred growth directions along [100] and a lattice spacing of 0.237 nm. Subsequently, the $NO_2$ sensing properties of the $SnO_2$ network nanowires sensor at an operating temperature of $50-250^{\circ}C$ were examined, and showed a reversible response to $NO_2$ at various $NO_2$ concentrations. Finally, details of the growth mechanism and formation of Sn spheres and $SnO_2$ nanowire networks are also discussed.

  • PDF

Nano-scale Information Materials Using Organic/Inorganic Templates (유기/무기 나노 템플레이트를 이용한 나노 정보소재 합성 연구)

  • Lee, Jeon-Kook;Jeung, Won-Young
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.4
    • /
    • pp.149-161
    • /
    • 2004
  • The fusion of nano technology and information technology is essential to sustain the present growth rate and to induce new industry in this ever-growing information age. Considering Korean industry whose competitiveness lies heavily on information related technologies, this field will be inevitable for future. Nano materials can be described as novel materials whose size of elemental structure has been engineered at the nanometer scale. Materials in the nanometer size range exhibit fundamentally new behavior, as their size falls below the critical length scale associated with any given property. " Bottom-up' techniques involve manipulating individual atoms and molecules. Bottom-up process usually implies controlled or directed self assembly of atoms and molecules into nano structures. It resembles more closely the processes of biology and chemistry, where atoms and molecules come together to create structures such as crystals or living cells. Nano scale sensors are included in the electronics area since the diverse sensing mechanisms are often housed on a semiconductor substrate and usually give rise to an electronic signal. The application of nano technology to the chemical sensors should allow improvements in functionality such as gas sensing. In this presentation, we will discuss about the nano scale information materials and devices fabricated by using the organic/inorganic nano templates.

Magnetoresistive Properties of Array IrMn Spin Valves Devices (어레이 IrMn 스핀밸브 소자의 자기저항특성 연구)

  • Ahn, M.C.;Choi, S.D.;Joo, H.W.;Kim, G.W.;Hwang, D.G.;Rhee, J.R.;Lee, S.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.4
    • /
    • pp.156-161
    • /
    • 2007
  • To develop array magnetic sensors, specular-type giant magnetoresistive- spin valve (GMR-SV) film of Glass/Ta(5)MiFe(7)/IrMn(10)NiFe(5)/$O_2$/CoFe(5)/Cu(2.6)/CoFe(5)/$O_2$/NiFe(7)/Ta(5)(nm) was deposited by using a high-vacuum sputtering system. One of 15 way sensors in the area of $8{\times}8mm^2$ was Patterned a size of $20{\times}80{\mu}m^2$ in multilayer sample by Photo-lithography. All of 15 sensors with Cu electrodes were measured a uniform magnetic properties by 2-probe method. The highest magnetic sensitivity of MR and output voltage measured nearby an external magnetic field of 5 Oe were MS = 0.5%/Oe and ${\triangle}$V= 3.0 mV, respectively. An easy-axis of top-free layers of $CoFe/O_2/NiFe$ with shape anisotropy was perpendicular to one of bottom-pinned layers $IrMn/NiFe/O_2/CoFe$. When the sensing current increased from 1 mA to 10 mA, the output working voltage uniformly increased and the magnetic sensitivity was almost stable to use the nano-magnetic devices with good sensitive properties.

A Design Technique of Configurable Framework for Home Network Systems (홈 네트워크 시스템을 위한 재구성 프레임워크 설계 기법)

  • Kim, Chul-Jin;Cho, Eun-Sook;Song, Chee-Yang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1844-1866
    • /
    • 2011
  • In a home network system, each customer electronic device has the control data format chosen by its manufacturing company and there are various types of digital devices and protocols. Besides the mutual operating environments among the various devices are dissimilar. Affected by the characteristics explained above, home network systems can hardly support the crucial functions, such as data compatibility, concurrency control, and dynamic plug-in. Thus, the home network system shows relatively poor reusability. In this paper, we suggest design technique of configurable framework, which can widely support the variability, to increase the reusability of the home network system. We extract the different parts of the home network system as variation points, and define them as the variability types. We design a structure of configurable framework, and suggest customization technique of configurable framework through selection technique and plug-in technique. Also, we prove the reusability by applying the proposed framework and it methods to real-world home network systems and analyzing the measurement results of these case studies using software metrics. We can expect the proposed approach provides better reusability than the existing them by analyzing those measurement results.

Evaluation for Adhesion Characteristics of UV-curable Bump Shape Stamp for Transfer Process (전사공정을 위한 UV 경화성 범프형 스탬프의 점착특성 평가)

  • Jeong, Yeon-Woo;Kim, Kyung-Shik;Lee, Chung-Woo;Lee, Jae-Hak;Kim, Jae-Hyun;Kim, Kwang-Seop
    • Tribology and Lubricants
    • /
    • v.32 no.3
    • /
    • pp.75-81
    • /
    • 2016
  • Future electronics such as electronic paper and foldable cellphone are required to be flexible and transparent and should have a high performance. In order to fabricate the flexible electronics using flexibility transfer process, techniques for transferring various devices from rigid substrate onto flexible substrate by elastomeric stamp, have been developed. Adhesion between the elastomeric stamp and various devices is crucial for successful transfer process. The adhesion can be controlled by the thickness of the stamp, separation velocity, contact load, and stamp surface treatment. In this study, we fabricated the bump shape stamp consisting of a UV-curable polymer and investigated the effects of curing condition, separation velocity, and contact load on the adhesion characteristics of bumps. The bumps with hemispherical shape were fabricated using a dispensing process, which is one of the ink-jet printing techniques. Curing conditions of the bumps were controlled by the amount of UV irradiation energy. The adhesion characteristics of bumps are evaluated by adhesion test. The results show that the pull-off forces of bumps were increased and decreased as UV irradiation energy increased. For UV irradiation energies of 300 and 500 mJ/cm2, the pull-off forces were increased as the separation velocity increased. The pull-off forces also increased with the increase of contact load. In the case of UV irradiation energy above 600 mJ/cm2, however, the pull-off forces were not changed. Therefore, we believe that the bump shape stamp can be applied to roll-based transfer process and selective transfer process as an elastomeric stamp.

The emergence and ensuing typology of global ebook platform -The case study on Google eBook, Amazon Kindle, Apple iBooks Store (글로벌 전자책 플랫폼의 부상 과정과 유형에 관한 연구 -구글 이북, 아마존 킨들, 애플 아이북스 스토어에 대한 사례연구)

  • Chang, Yong-Ho;Kong, Byoung-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3389-3404
    • /
    • 2012
  • Based on the case study methods, the study analyzes emergence and ensuing typology of global ebook platforms such as Google eBook, Amazon Kindle, iBooks Store. Global ebook platforms show adaptation process responding to rapidly changing digital technological envirment and it's fitness landscape. The critical elements in its emerging process are the distinct selection criteria, the degree of resource abundance and the search process based on open innovation. Based on these critical elements, the global platforms show speciation process, so called niche creation and are evolving into a variety of the typology based on the initial condition of key resource which makes the platform emerge and grow. Each global ebook platforms is evolving into open platform, hybrid platform, closed platform. Google eBook has openness and extensibility due to a variety of devices based on Android and a direct involvement of actors. Amazon Kindle has developed from a online bookstore and into the hybrid platform which have not only closed quality but also openness with ebook devices and mobile network. iBooks Store has developed into the closed platform through the agency model based on competitive hardwares and closed quality with iphone and ipad.

A Implementation of User Exercise Motion Recognition System Using Smart-Phone (스마트폰을 이용한 사용자 운동 모션 인식 시스템 구현)

  • Kwon, Seung-Hyun;Choi, Yue-Soon;Lim, Soon-Ja;Joung, Suck-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.396-402
    • /
    • 2016
  • Recently, as the performance of smart phones has advanced and their distribution has increased, various functions in existing devices are accumulated. In particular, functions in smart devices have matured through improvement of diverse sensors. Various applications with the development of smart phones get fleshed out. As a result, services from applications promoting physical activity in users have gotten attention from the public. However, these services are about diet alone, and because these have no exercise motion recognition capability to detect movement in the correct position, the user has difficulty obtaining the benefits of exercise. In this paper, we develop exercise motion-recognition software that can sense the user's motion using a sensor built into a smart phone. In addition, we implement a system to offer exercise with friends who are connected via web server. The exercise motion recognition utilizes a Kalman filter algorithm to correct the user's motion data, and compared to data that exist in sampling, determines whether the user moves in the correct position by using a DTW algorithm.

Photovoltaic Properties of MEH-PPV/DFPP Blend Devices Based on Novel n-type Polymer DFPP (새로운 n형 고분자인 DFPP 기반의 MEH-PPV/DFPP Blend 소자의 광전특성)

  • Kim, Su-Hyun;Moon, Ji-Sun;Lee, Jae-Woo;Lee, Seok;Kim, Sun-Ho;Byun, Young-Tae;Kim, Dong-Young;Lee, Chang-Jin;Kim, Eu-Gene;Chung, Young-Chul;Rie, Kung-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.461-468
    • /
    • 2006
  • Optical characteristics in polymer films of MEH-PPV/DFPP blends were for the first time investigated. DFPP (N, N'-diperfluorophenyl-3,4,9,10-perylenetetracarboxylic diimide) used here was a novel n-type polymer, which had good stability in air and solubility in common solvents. For a 1:9 DFPP:MEH-PPV blend, highly efficient quenching of photoluminescence (PL) was observed. In addition, the photocurrent responses of these MEH-PPV/DFPP photovoltaic cells were measured. When the light intensity was $50mW/cm^2$, short-circuit photocurrent densities were two times higher than those of single layer MEH-PPV devices.

The Usefulness of a Wearable Device in Daily Physical Activity Monitoring for the Hospitalized Patients Undergoing Lumbar Surgery

  • Kim, Dong Hwan;Nam, Kyoung Hyup;Choi, Byung Kwan;Han, In Ho;Jeon, Tae Jin;Park, Se Young
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.5
    • /
    • pp.561-566
    • /
    • 2019
  • Objective : Functional outcomes have traditionally been evaluated and compared using subjective surveys, such as visual analog scores (VAS), the Oswestry disability index (ODI), and Short Form-36 (SF-36), to assess symptoms and quality of life. However, these surveys are limited by their subjective natures and inherent bias caused by differences in patient perceptions of symptoms. The Fitbit $Charge^{(R)}$ (Fitbit Inc., San Francisco, CA, USA) provides accurate and objective measures of physical activity. The use of this device in patients after laminectomy would provide objective physical measures that define ambulatory function, activity level, and degree of recovery. Therefore, the present study was conducted to identify relationships between the number of steps taken by patients per day and VAS pain scores, prognoses, and postoperative functional outcomes. Methods : We prospectively investigated 22 consecutive patients that underwent laminectomy for spinal stenosis or a herniated lumbar disc between June 2015 and April 2016 by the same surgeon. When patients were admitted for surgery and first visited after surgery, preoperative and postoperative functional scores were recorded using VAS scores, ODI scores, and SF-36. The VAS scores and physical activities were recorded daily from postoperative day (POD) 1 to POD 7. The relationship between daily VAS scores and daily physical activities were investigated by simple correlation analysis and the relationship between mean number of steps taken and ODI scores after surgery was subjected to simple regression analysis. In addition, Wilcoxon's signed-rank test was used to investigate the significance of pre-to-postoperative differences in VAS, ODI, and SF-36 scores. Results : Pre-to-postoperative VAS (p<0.001), ODI (p<0.001), SF-36 mental composite scores (p=0.009), and SF-36 physical composite scores (p<0.001) scores were found to be significantly different. Numbers of steps taken from POD 1 to POD 7 were negatively correlated with daily VAS scores (r=-0.981, p<0.001). In addition, the mean number of steps from POD 3 to POD 7 and the decrease in ODI conducted one month after surgery were statistically significant (p=0.029). Conclusion : Wearable devices are not only being used increasingly by consumers as lifestyle devices, but are also progressively being used in the medical area. This is the first study to demonstrate the usefulness of a wearable device for checking patient physical activity and predicting pain and prognosis after laminectomy. Based on our experience, the wearable device used to provide measures of physical activity in the present study has the potential to provide objective information on pain severity and prognosis.