• Title/Summary/Keyword: Electronic devices

Search Result 4,580, Processing Time 0.033 seconds

Low-Temperature Plasma Enhanced Chemical Vapor Deposition Process for Growth of Graphene on Copper

  • Ma, Yifei;Jang, Hae-Gyu;Chae, Hui-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.433-433
    • /
    • 2013
  • Graphene, $sp^2$-hybridized 2-Dimension carbon material, has drawn enormous attention due to its desirable performance of excellent properties. Graphene can be applied for many electronic devices such as field-effect transistors (FETs), touch screen, solar cells. Furthermore, indium tin oxide (ITO) is commercially used and sets the standard for transparent electrode. However, ITO has certain limitations, such as increasing cost due to indium scarcity, instability in acid and basic environments, high surface roughness and brittle. Due to those reasons, graphene will be a perfect substitute as a transparent electrode. We report the graphene synthesized by inductive coupled plasma enhanced chemical vapor deposition (ICP-PECVD) process on Cu substrate. The growth was carried out using low temperature at $400^{\circ}C$ rather than typical chemical vapor deposition (CVD) process at $1,000^{\circ}C$ The low-temperature process has advantage of low cost and also low melting point materials will be available to synthesize graphene as substrate, but the drawback is low quality. To improve the quality, the factor affect the quality of graphene was be investigated by changing the plasma power, the flow rate of precursors, the scenario of precursors. Then, graphene film's quality was investigated with Raman spectroscopy and sheet resistance and optical emission spectroscopy.

  • PDF

Fabrication of Etched Graphene/CuO Nanowires as Field Effect Transistors

  • Hien, Vu Xuan;Kim, Se-Yun;Kim, MyeongEon;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.430-430
    • /
    • 2013
  • Field effect transistor based on semiconductor nanowires has been attracting lots of concerns and studies of scientists because of its different characteristic comparing with other morphology like thin film. Nowadays, graphene is introducing a great promise as an active layer in field effect transistor due to its unique electronic and optoelectronic properties. Thus, a mix structure between etched graphene and semiconductor nanowires is believed to expose novel electrical characteristics. In this study, CuO nanowires (20~80 nm in diameter and $1{\sim}10{\mu}m$ length) were grown during oxidizing Cu foil at $450^{\circ}C$ for 24 h. Besides, 3-layersetched graphene was deposited on Cu foil at $1,000^{\circ}C$ using a feedstock of $CH_4$/$H_2$ mixed gas in CVD system. A structure of Ni/Au electrode + CuO nanowires + etched graphene was fabricated, afterward. Finally, field effect properties of the device was revealed and compared with individual devices of just nanowires and just graphene.

  • PDF

Incorporation of Manganese Oxide Nanoparticles Into Polyaniline Hollow Nanospheres and Its Application to Supercapacitors

  • Kwon, Hyemin;Ryu, Ilhwan;Han, Jiyoung;Yim, Sanggyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.295-295
    • /
    • 2013
  • Supercapacitors with higher energy and power density are attracting growing attention for their wide range of potential applications such as portable electronic equipments, hybrid vehicle and cellular devices. In various classes of materials for supercapacitors, the redox pseudocapacitive materials such as conducting polymers and metal oxides have been most widely studied recently. The nanostructuring of the electrode surface has also been focused on since it can provide large surface area and consequently easy diffusion of ions in the capacitors. Among the active materials, in this work, we have used polyaniline (PANi) and manganese oxide ($MnO_2$). PANi is one of the promising electrode and active materials due to its desirable properties such as high electrochemical activity, high doping level and stability. $MnO_2$ is also widely studied material for supercapacitors since it is relatively cheap and environmentally friendly. In this work, we fabricated PANi hollow nanospheres by polymerizing aniline monomers on the polystyrene (PS) nanospheres and then dissolving the inner PS spheres. This nanostructuring of the PANi surface can provide large surface area and hence easy diffusion of electrolyte ions. We also incorporated $MnO_2$ nanoparticles into the PANi hollow nanospheres and investigated its electrochemical properties. It is expected that the combination of these two active materials with slightly different working potential windows show synergetic effects such as broader working potential range and enhanced specific capacitance.

  • PDF

A Study on the Growth of Tantalum Oxide Films with Low Temperature by ICBE Technique (ICBE 기법에 의한 저온 탄탈륨 산화막의 형성에 관한 연구)

  • Kang, Ho-Cheol;Hwang, Sang-Jun;Bae, Won-Il;Sung, Man-Young;Rhie, Dong-Hee;Park, Sung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1463-1465
    • /
    • 1994
  • The electrical characteristics of $Al/Ta_2O_5/Si$ metal-oxide-semiconductor (MOS) capacitors were studied. $Ta_2O_5$ films on p-type silicon had been prepared by ionized cluster beam epitaxy technique (ICBE). This $Ta_2O_5$ films have low leakage current, high breakdown strength and low flat band shift. In this research, a single crystalline cpitaxial film of $Ta_2O_5$ has been grown on p-Si wafer using an ICBE technique. The native oxide layer ($SiO_2$) on the silicon substrate was removed below $500^{\circ}C$ by use of an accelerated arsenic ion beam, instead of a high temperature deposition. $Ta_2O_5$ films formed by ICBE technique can be received considerable attention for applications to coupling capacitors, gate dielectrics in MOS devices, and memory storage capacitor insulator because of their high dielectric constants above 20 and low temperature process.

  • PDF

Current Status of Thin Film Silicon Solar Cells for High Efficiency

  • Shin, Chonghoon;Lee, Youn-Jung;Park, Jinjoo;Kim, Sunbo;Park, Hyeongsik;Kim, Sangho;Jung, Junhee;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.5 no.4
    • /
    • pp.113-121
    • /
    • 2017
  • The researches on the silicon-based thin films are being actively carried out. The silicon-based thin films can be made as amorphous, microcrystalline and mixed phase and it is known that the optical bandgap can be controlled accordingly. They are suitable materials for the fabrication of single junction, tandem and triple junction solar cells. It can be used as a doping layer through the bonding of boron and phosphorus. The carbon and oxygen can bond with silicon to form a wide range of optical gap. Also, The optical gap of hydrogenated amorphous silicon germanium can be lower than that of silicon. By controlling the optical gaps, it is possible to fabricate multi-junction thin film silicon solar cells with high efficiencies which can be promising photovoltaic devices.

Study on the Characteristics of Organic TFT Using Pentacene as a Active Layer (Pentacene을 활성층으로 이용한 유기 TFT의 특성 연구)

  • Kim, Young-Kwan;Sohn, Byoung-Chung;Kim, Yun-Myoung;Pyo, Sang-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.191-196
    • /
    • 2001
  • Organic semiconductors based on vacuum-deposited films of fused-ring polycyclic aromatic hydrocarbon have great potential to be utilized as an active layer for electronic and optoelectronic devices. In this study, pentacene thin films and electrode materials were deposited by Organic Molecular Beam Deposition (OMBD) and vacuum evaporation respectively. For the gate dielectric layer, photoacryl (OPTMER PC403 from JSR Co.) was spin-coated and cured at $220^{\circ}C$. Electrical characteristics of the device were investigated, where the channel length and width was 50 ${\mu}m$ and 5 mm. It was found that field effect mobility was 0.039 $cm^{2}V^{-1}s^{-1}$, threshold voltage was -8 V, and on/off current ratio was $10^{6}$. Further details will be discussed.

First-principles Study on the Formation of Solid-Electrolyte Interphase on the LiMn2O4 Cathode in Li-Ion Batteries (제일원리 전산모사를 통한 리튬 이온 전지의 LiMn2O4 전극-전해질 계면 반응 분석)

  • Choe, Dae-Hyeon;Gang, Jun-Hui;Han, Byeong-Chan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.97-97
    • /
    • 2016
  • Development of advanced Li-ion battery cells with high durability is critical for safe operation, especially in applications to electric vehicles and portable electronic devices. Understanding fundamental mechanism on the formation of a solid-electrolyte interphase (SEI) layer, which plays a substantial role in the electrochemical stability of the Li-ion battery, in a cathode was rarely reported unlike in an anode. Using first-principles density functional theory (DFT) calculations and ab-initio molecular dynamic (AIMD) simulations we demonstrate atomic-level process on the generation of the SEI layer at the interface of a carbonate-based electrolyte and a spinel $LiMn_2O_4$ cathode. To accomplish the object we calculate the energy band alignment between the work function of the cathode and frontier orbitals of the electrolyte. We figure out that a proton abstraction from the carbonate-based electrolyte is a critical step for the initiation of an SEI layer formation. Our results can provide a design concept for stable Li-ion batteries by optimizing electrolytes to form proper SEI layers.

  • PDF

Carbon Nanotube-Copper Hybrid Thin Film on Flexible Substrate fabricated by Ultrasonic Spray Coating and Laser Sintering Process (초음파 스프레이 코팅과 레이저 소결 공정에 의해 유연 기판 표면에 형성된 탄소나노튜브-구리 하이브리드 박막)

  • Park, Chae-Won;Gwon, Jin-Hyeong;Eom, Hyeon-Jin
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.135-135
    • /
    • 2016
  • Recently flexible electrode materials have attracted attention in various electrical devices. In general, copper(Cu) is widely used electrical conductive material. However, Cu film showed drastically reduction of electrical conductivities under an applied tensile strain of 10%. These poor mechanical characteristics of Cu have difficulty applying in flexible electronic applications. In this study, mechanical flexibilities of Cu thin film were improved by hybridization with carbon nanotubes(CNTs) and laser sintering. First, thin carbon nanotube films were fabricated on a flexible polyethylene terephthalate(PET) substrate by using ultrasonic spray coating of CNT dispersed solution. After then, physically connected CNT-Cu NPs films were formed by utilizing ultrasonic spray coating of Cu nanoparticles dispersed solution on prepared CNT thin films. Finally, CNT-Cu thin films were firmly connected by laser sintering. Therefore, electrical stabilities under mechanical stress of CNT-Cu hybrid thin films were compared with Cu thin films fabricated under same conditions to confirm improvement of mechanical flexibilities by hybridization of CNT and Cu NPs.

  • PDF

A Directional Feature Extraction Method of Each Region for the Classification of Fingerprint Images with Various Shapes (다양한 형태의 지문 이미지 분류를 위한 영역별 방향특징 추출 방법)

  • Jung, Hye-Wuk;Lee, Jee-Hyong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.9
    • /
    • pp.887-893
    • /
    • 2012
  • In this paper, we propose a new approach to extract directional features based on directional patterns of each region in fingerprint images. The proposed approach computes the center of gravity to extract features from fingerprint images of various shapes. According to it, we divide a fingerprint image into four regions and compute the directional values of each region. To extract directional features of each region from a fingerprint image, we spilt direction values of ridges in a region into 18 classes and compute frequency distribution of each region. Through the result of our experiment using FVC2002 DB database acquired by electronic devices, we show that directional features are effectively extracted from various fingerprint images of exceptional inputs which lost all or part of singularities. To verify the performance of the proposed approach, we explained the process to model Arch, Left, Right and Whorl class using the extracted directional features of four regions and analyzed the classification result.

A Study on the Design of Inaudible Acoustic Signal in Acoustic Communications and Positioning System (음향 통신 및 위치측정 시스템에서의 비가청 음향 신호 설계에 관한 연구)

  • Oh, Jongtaek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.191-197
    • /
    • 2017
  • According to the ubiquitous usage of smartphone, so many smartphone applications have been developed, and especially data communications and position measurement technologies without additional equipments have been developed using acoustic signal. But there is a limitation to select the frequency of the acoustic signal due to the smartphone hardware, and there is non-linearity in the electronic circuits in a sound generation devices, the audible sound generated from the speaker is not avoidable. And it causes critical difficulty to the commercial system deployment. In this paper, a simulation technique to calculate the power of the audible acoustic signal by human is applied to several types of acoustic signals to evaluate the loudness. These could be referred when the acoustic communications or positioning systems are designed, for the purposed of inaudible sounding to human.