• Title/Summary/Keyword: Electronic cooling system

Search Result 214, Processing Time 0.117 seconds

A Numerical Analysis in Piezoelectric Fan Systems (압전세라믹 냉각팬에 대한 수치해석적 연구)

  • Park, Ji-Ho;Kim, Eun-Pil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.994-1000
    • /
    • 2011
  • In this study, the piezoelectric fan cooling system is investigated. In order to find the proper geometry and configuration, the numerical model for the flow field and heat transfer investigation is used. A simplified nonlinear deformation model is employed for transient solutions of a piezoelectric fan with the dynamic mesh and user defined function capability. The results show that the cooling is most effective when the length of a piezoelectric fan is 5 cm and the cooling plate is 3 cm. The results can be used to develop a new design method of heat sink for piezoelectric fans.

DEVELOPMENT and THERMAL DISTRIBUTION of an RF CAPACITIVE HYPERTHERMIA SYSTEM (고주파 유전가열형 온열암치료기의 개발과 가온특성)

  • Park, Mig-Non;Lee, Sang-Bae;Park, Duk-Kyu;Chu, Sung-Sil;Jung, Mi-Hyang
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1309-1312
    • /
    • 1987
  • Hyperthermia for the treatment of cancer has been introduced for a long time and the biological effect for the use of hyperthermia to malignant tumors has been well established and encouraging clinical results has been observed. Unfortunately, the engineering or technical aspects of hyperthermia for the deep seated tumors has not been satisfactory. We have researched and developed the radiofrequency capacitive hyperthermia system (GHT- RF8). It was composed with 8-9 MHZ RF generator, capacitive electrode, matching system, cooling system, temperature measuring system and control computer. The thermal profile was investigated in agar phantom, animals and in human tumors, which was heated with capacitive RF device.

  • PDF

Fan Noise Prediction Method of Air Conditioning and Cooling System (공기조화 및 냉각시스템의 팬 소음예측 기법)

  • Lee, Jin-Young;Lee, Chan;Kil, Hyun-Gwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1318-1320
    • /
    • 2007
  • Fan noise prediction method is presented for air conditioning and/or cooling system applications where fan acts as an internal equipment having very complicated flow interaction with other various system components. The internal flow paths and distribution in the fan-applied systems such as computer or air conditioner are analyzed by using the FNM(Flow Network Modeling) with the flow resistances for flow elements of the system. Based on the fan operation point predicted from the FNM analysis results, the present fan noise model predicts overall sound power, pressure levels and spectrum. The predictions of the flow distribution, the fan operation and the noise level in electronic system by the present method are well agreed with 3-D CFD and actual noise test results.

  • PDF

Cooling Performance of a Hybrid Refrigeration System for Telecommunication Equipment (통신기기 냉각용 하이브리드 냉방시스템의 성능특성)

  • Jeon, Jong-Ug;Kim, Yong-Chan;Choi, Jong-Min
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.489-494
    • /
    • 2006
  • Electronic and telecommunication industries are constantly trying to develop compact components having high power density. Therefore, a proper heat dissipation method is very important to allow reliable operation of the telecommunication equipment. In this study, a hybrid refrigeration system for a telecommunication equipment room was designed to save energy consumption and improve reliability of the compressor In addition, the performance of the hybrid refrigeration system was measured with a variation of outdoor load. The designed hybrid refrigeration system for the telecommunication equipment shelter saved the energy approximately 50%e at the mode switch temperature of $8.3^{\circ}C$.

  • PDF

The Performance of a Heat Pump with a Variation of Expansion Valve at Various Charging Conditions (냉매 충전량과 팽창장치 변화에 따른 열펌프 시스템의 성능특성에 관한 연구)

  • 최종민;김용찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.8
    • /
    • pp.661-666
    • /
    • 2003
  • Constant area expansion devices such as capillary tubes, short tube orifices are being gradually replaced with electronic expansion valves (EEVs) because of increasing focus on comfort and energy conservation. In this study, the performance of a water-to-water heat pump as a function of refrigerant charge is investigated in steady state, cooling mode operation with expansion devices of a capillary tube and an EEV. The performance of the capillary tube system varies drastically according to the change of refrigerant charge amount and inlet temperature of the secondary fluid in the condenser. Cooling capacity and COP of the EEV system show little dependence on the refrigerant charge, while those are strongly dependent on the secondary fluid temperature at the condenser inlet. In general, for a wide range of operating conditions the EEV system shows much higher performance as compared with the capillary tube system. The performance of the EEV system can be optimized by adjusting EEV opening to maintain a constant superheat at all test conditions.

Heat Dissipation of Sealed LED Light Fixtures Using Pulsating Heat Pipe Technology

  • Kim, Hyung-Tak;Park, Hae-Kyun;Bang, Kwang-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.64-71
    • /
    • 2012
  • An efficient cooling system is an essential part of the electronic packaging such as a high-luminance LED lighting. A special technology, Pulsating Heat Pipe (PHP), can be applied to improve cooling of a sealed, explosion-proof LED light fixture. In this paper, the characteristics of the pulsating heat pipes in the imposed thermal boundary conditions of LED lightings were experimentally investigated and a PHP device that works free of alignment angle was investigated for cooling of explosion-proof LED lights. Five working fluids of ethanol, FC-72, R-123, water, and acetone were chosen for comparison. The experimental pulsating heat pipe was made of copper tubes of internal diameter of 2.1 mm, 26 turns. A variable heat source of electric heater and an array of cooling fins were attached to the pulsating heat pipe. For the alignment of the heating part at bottom, an optimum charging ratio (liquid fluid volume to total volume) was about 50% for most of the fluids and water showed the highest heat transfer performance. For the alignment of the heating part on top, however, only R-123 worked in an un-looped construction. This unique advantage of R-123 is attributed to its high vapor pressure gradient. Applying these findings, a cooling device for an explosion-proof type of LED light rated 30 W was constructed and tested successfully.

An Experimental Study on Heat Transfer Performances in 8mm-diameter Heat Pipes with Screen Mesh Wick (스크린 메쉬 윅을 삽입한 8mm 히트파이프에서 열전달 성능에 관한 실험적 연구)

  • Park, Ki-Ho;Lee, Ki-Woo;Noh, Seung-Yong;Lee, Kye-Jung;Yoo, Seong-Yeon
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.48-53
    • /
    • 2001
  • This experimental study is to research heat transfer characteristics in copper-water heat pipes with screen wick, the 150 and 200-mesh. Recent advances in the miniaturization and large capacity of electronic devices have had a major impact on the design of electronic equipment. As a result, a high-performance cooling system is needed. Experimental variables are inclination angle, number of layer and temperature of cooling water. The distilled water was used for the working fluid. At a inclination angle $6^{\circ}$, the 200-mesh screen wick 3-layer is shown the best heat transfer performance.

  • PDF

Temperature Control for LED Lamps Using RF Communication (RF통신을 이용한 LED 조명의 온도제어)

  • Choi, Hyeung-Sik;Shin, Hee-Young;Oh, Ji-Youn;Lee, Sang-Seop
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.10
    • /
    • pp.759-765
    • /
    • 2012
  • In this paper, a temperature control for LED (light emitting diode) lamp using a cooling fan is studied. An efficient temperature control scheme for the LED lamp using the fan wind at the lowest sound noise is studied. For the study, after measurement of the minimum sound noise of the fan and related temperature of the LED lamp through tests, experiments on temperature control of the LED lamp using the fan with various size of heat sinks was performed. To reduce the fan sound noise, a method of reducing the operation time with optimal size of the heat sink was studied. Also, a control of LED lamps using RF communication was studied.

Current Leads Fabrication of High $T_c$ Bi System Superconductor Using Rapid Cooling Method (급속응고법을 이용한 Bi 계 고온초전도체 전류도입선 제조)

  • 박용민;한진만;류운선;류운선
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.3
    • /
    • pp.254-258
    • /
    • 2000
  • Current leads of high $T_{c}$ superconductor were fabricated with Bi excess B $i_{2.2}$/S $r_{1.8}$/C $a_{1}$/C $u_{2}$/ $O_{x}$ composition by rapid cooling method. The dimensions of final samples were fixed 3 mm and 8 mm diameter with 50 mm length each To control uniform density the samples were preformed by CIP(Cold Isostatic Press) process and followed by partial or full melting process after raising up to 90$0^{\circ}C$ for 30min. Plate shaped microstructure was clearly observed adjacent to the Ag tube wall and the size of plate was about 100$\mu$m. However the severe destruction of growth orientation was shown in the inner growth part. critical temperature ( $T_{c}$) was about 53~71K after directional growth while Tc was decreased about 77~80 K before directional growth. After directional growth critical current( $I_{c}$) and critical current density( $J_{c}$) in the specimen of 8 mm diameter at 50 K were about 110 A and 280 A/c $m^2$ respectively.pectively.ely.

  • PDF

Personalized Cooling Management System with Thermal Imaging Camera (열화상 카메라를 적용한 개인 맞춤형 냉각관리 시스템)

  • Lee, Young-Ji;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.782-785
    • /
    • 2021
  • In this paper, we propose a personalized cooling management system with thermal imaging camera. The proposed equipment uses a thermal imaging camera to control the amount of cold air and the system according to the difference between the user's skin temperature before and after the procedure. When the skin temperature is abnormally low, the cold air supply is cut off to prevent the possibility of a safety accident. It is economical by replacing the skin temperature sensor with a thermal imaging camera temperature measurement, and it can be visualized because the temperature can be checked with the thermal image. In addition, the proposed equipment improves the sensitivity of the sensor that measures the distance to the skin by calculating the focal length by using a dual laser pointer for the safety of a personalized cooling management system to which a thermal imaging camera is applied. In order to evaluate the performance of the proposed equipment, it was tested in an externally accredited testing institute. The first measured temperature range was -100℃~-160℃, indicating a wider temperature range than -150~-160℃(cryo generation/USA), which is the highest level currently used in the field. In addition, the error was measured to be ±3.2%~±3.5%, which showed better results than ±5%(CRYOTOP/China), which is the highest level currently used in the field. The second measured distance accuracy was measured as below ±4.0%, which was superior to ±5%(CRYOTOP/China), which is the highest level currently used in the field. Third, the nitrogen consumption was confirmed to be less than 0.15 L/min at the maximum, which was superior to the highest level of 6 L/min(POLAR BEAR/USA) currently used in the field. Therefore, it was determined that the performance of the personalized cooling management system applied with the thermal imaging camera proposed in this paper was excellent.