• Title/Summary/Keyword: Electronic communication

Search Result 8,977, Processing Time 0.033 seconds

Analysis of the Effect of The Internet Activation on Students in IoT Environment (사물인터넷 환경에서 인터넷 활성화가 학생에 미치는 영향 분석)

  • Lee, Dong-Woo;Cho, Kwangmoon;Lee, Seong-Hoon
    • Journal of Internet of Things and Convergence
    • /
    • v.7 no.1
    • /
    • pp.55-62
    • /
    • 2021
  • The world is changing rapidly as the Internet spreads and various smart devices appear. High-performance PCs and high-speed communication networks are rapidly spreading in every home, and all kinds of the internet sites are emerging. In particular, the high education enthusiasm of Korean parents adds to this, and the ratio of the internet users among teenagers is exploding every day. In the case of adolescents, most of them use the Internet for online games, indicating that online games are the main cause of the internet addiction. This study was conducted using a questionnaire for male and female high school students using the Internet, and demographic and sociological characteristics were used only as basic data. In this study, as much as parents, students and teachers think, the results of the internet addiction type analysis according to academic achievement in humanities high school students are to be investigated to determine whether internet use has an effect on academic achievement.

Non-Orthogonal Multiple Access based Phase Rotation Index Modulation (비직교 다중 접속 기반 위상 회전 인덱스 변조 기법)

  • Lee, Hye Yeong;Shin, Soo Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.267-273
    • /
    • 2021
  • Non-orthogonal multiple access is the promised candidates in the next generation wireless networks to improve the spectral efficiency by superposing multiple signals. In general, the superposition coding is performed using the difference in channel gain between users based on the user's power allocation. However, when user pairs have the similar channel gain problem, NOMA can not be allowed in the scenario. To overcome this problem, phase rotation based NOMA is presented to increase minimum distance between superposed signals in the constellation point. This paper proposed a novel non-orthogonal multiple access based index modulation using phase rotation. The additional bits can transfer using the index bits that is allocated according to the activated state of the phase rotation. Simulation results are shown that bit error rate and achievable sum rate are better than conventional NOMA.

Accuracy improvement of injection parameters for optical complex signal generation using optical injection-locked semiconductor laser (광 주입 파장 잠금 반도체 레이저를 이용한 광학 복소 신호 생성시의 주입 매개 변수 정확도 향상)

  • Cho, Jun-Hyung;Sung, Hyuk-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.478-485
    • /
    • 2021
  • An injection locking technology of a semiconductor laser is a promising technology to generate optical complex signals by adjusting optical injection parameters. The extraction of the precise injection parameters plays a key role in the generation of the optical complex signal. Rate equations of semiconductor lasers under optical injection are commonly used to map the injection parameters and the corresponding optical complex signal. The accuracy of the generated optical complex signal on the injection parameters is limited since the rate equations require a locking map-based interpolation method. We propose a novel analytic method, namely rate equation-based direct extraction method, to directly calculate the injection parameters without relying on the locking map-based interpolation method. We achieved 103-times improvement of the signal accuracy by using the proposed method compared to locking-map based interpolation method.

A Comparative Study on the Nursing Dependency of Suspected COVID-19 Patients and General Patients in the Emergency Department (응급실에 내원한 COVID-19 의심환자와 일반환자의 간호의존도 비교 연구)

  • Baik, Seung Yeon;Park, Sol Mi;Jeong, Ju Hee;Kim, Moon Joung;Park, Su Bin;Lee, Hyo Jin;Choi, Ji Young;Kwak, Hyo Eun;Lim, Jung Hyen;Lee, Hyun Sim
    • Journal of Korean Clinical Nursing Research
    • /
    • v.27 no.2
    • /
    • pp.199-209
    • /
    • 2021
  • Purpose: This study was conducted to investigate the nursing needs and workload of nurses according to nursing dependency for effective placement of nursing staff in the emergency department (ED). Methods: In June 2020, 256 adult patients who visited the ED were classified as two groups, suspected COVID-19 patients and general patients. The participants'electronic medical records were analyzed using descriptive statistics, t-test, 𝑥2-test, and Fisher's exact test using the SPSS. Results: The patient dependence score showed a significant difference between the two groups, with an average of 13.99±1.85 for the suspected COVID-19 patient group and 10.58±2.10 for the general patient group (t=12.42, p<.001). There were statistically significant differences in communication (t=3.28, p=.001), mobility (t=3.29, p=.001), nutrition, elimination, and personal care (t=7.34, p<.001) among the six domains of nursing dependency. In the domains of environment, safety, health, and social needs, the dependency score was 3 for all suspected COVID-19 patients and 1 for all general patients. Conclusion: The results of this study confirmed that infection control activities of emergency patients who need isolation affect the patients' nursing dependency on nursing care.

A Scalable ECC Processor for Elliptic Curve based Public-Key Cryptosystem (타원곡선 기반 공개키 암호 시스템 구현을 위한 Scalable ECC 프로세서)

  • Choi, Jun-Baek;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1095-1102
    • /
    • 2021
  • A scalable ECC architecture with high scalability and flexibility between performance and hardware complexity is proposed. For architectural scalability, a modular arithmetic unit based on a one-dimensional array of processing element (PE) that performs finite field operations on 32-bit words in parallel was implemented, and the number of PEs used can be determined in the range of 1 to 8 for circuit synthesis. A scalable algorithms for word-based Montgomery multiplication and Montgomery inversion were adopted. As a result of implementing scalable ECC processor (sECCP) using 180-nm CMOS technology, it was implemented with 100 kGEs and 8.8 kbits of RAM when NPE=1, and with 203 kGEs and 12.8 kbits of RAM when NPE=8. The performance of sECCP with NPE=1 and NPE=8 was analyzed to be 110 PSMs/sec and 610 PSMs/sec, respectively, on P256R elliptic curve when operating at 100 MHz clock.

Implementation of FPGA-based Accelerator for GRU Inference with Structured Compression (구조적 압축을 통한 FPGA 기반 GRU 추론 가속기 설계)

  • Chae, Byeong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.850-858
    • /
    • 2022
  • To deploy Gate Recurrent Units (GRU) on resource-constrained embedded devices, this paper presents a reconfigurable FPGA-based GRU accelerator that enables structured compression. Firstly, a dense GRU model is significantly reduced in size by hybrid quantization and structured top-k pruning. Secondly, the energy consumption on external memory access is greatly reduced by the proposed reuse computing pattern. Finally, the accelerator can handle a structured sparse model that benefits from the algorithm-hardware co-design workflows. Moreover, inference tasks can be flexibly performed using all functional dimensions, sequence length, and number of layers. Implemented on the Intel DE1-SoC FPGA, the proposed accelerator achieves 45.01 GOPs in a structured sparse GRU network without batching. Compared to the implementation of CPU and GPU, low-cost FPGA accelerator achieves 57 and 30x improvements in latency, 300 and 23.44x improvements in energy efficiency, respectively. Thus, the proposed accelerator is utilized as an early study of real-time embedded applications, demonstrating the potential for further development in the future.

Smart Glove Gimbal Control that Improves the Convenience of Drone Control (드론 제어의 편의성을 향상한 스마트 글러브 짐벌 제어)

  • Lee, Seung Ho;Shin, Soo Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.890-896
    • /
    • 2022
  • In this paper, gimbal camera control through smart gloves was implemented to increase convenience and accessibility to the control of drones used in various fields. Smart gloves identify human gestures and transmit signals through Bluetooth. The received signal is converted into a signal suitable for the drone through a GCS (Gound Control Station). Signals from smart gloves are expressed in a quaternion method to prevent gimbal locks, but for gimbal cameras, conversion is required to use Roll, Pitch, and Yaw methods. The data conversion mission is performed in the GCS. The GCS transmits an input signal to the control board of the drone through Wi-Fi. The control board generates and outputs the transmitted signal in a PWM manner. The output signal is input to the gimbal camera through the SBUS method and controlled. The input signal of the smart glove averaged 0.093 s and up to 0.099 s to output to the gimbal camera, showing that there was no problem in real-time use.

Semantic Depth Data Transmission Reduction Techniques using Frame-to-Frame Masking Method for Light-weighted LiDAR Signal Processing Platform (LiDAR 신호처리 플랫폼을 위한 프레임 간 마스킹 기법 기반 유효 데이터 전송량 경량화 기법)

  • Chong, Taewon;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1859-1867
    • /
    • 2021
  • Multi LiDAR sensors are being mounted on autonomous vehicles, and a system to multi LiDAR sensors data is required. When sensors data is transmitted or processed to the main processor, a huge amount of data causes a load on the transport network or data processing. In order to minimize the number of load overhead into LiDAR sensor processors, only semantic data is transmitted through data comparison between frames in LiDAR data. When data from 4 LiDAR sensors are processed in a static environment without moving objects and a dynamic environment in which a person moves within sensor's field of view, in a static experiment environment, the transmitted data reduced by 89.5% from 232,104 to 26,110 bytes. In dynamic environment, it was possible to reduce the transmitted data by 88.1% to 29,179 bytes.

Embedding Cobalt Into ZIF-67 to Obtain Cobalt-Nanoporous Carbon Composites as Electrode Materials for Lithium ion Battery

  • Zheng, Guoxu;Yin, Jinghua;Guo, Ziqiang;Tian, Shiyi;Yang, Xu
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.458-464
    • /
    • 2021
  • Lithium ion batteries (LIBs) is a kind of rechargeable secondary battery, developed from lithium battery, lithium ions move between the positive and negative electrodes to realize the charging and discharging of external circuits. Zeolitic imidazolate frameworks (ZIFs) are porous crystalline materials in which organic imidazole esters are cross-linked to transition metals to form a framework structure. In this article, ZIF-67 is used as a sacrificial template to prepare nano porous carbon (NPC) coated cobalt nanoparticles. The final product Co/NPC composites with complete structure, regular morphology and uniform size were obtained by this method. The conductive network of cobalt and nitrogen doped carbon can shorten the lithium ion transport path and present high conductivity. In addition, amorphous carbon has more pores that can be fully in contact with the electrolyte during charging and discharging. At the same time, it also reduces the volume expansion during the cycle and slows down the rate of capacity attenuation caused by structure collapse. Co/NPC composites first discharge specific capacity up to 3115 mA h/g, under the current density of 200 mA/g, circular 200 reversible capacity as high as 751.1 mA h/g, and the excellent rate and resistance performance. The experimental results show that the Co/NPC composite material improves the electrical conductivity and electrochemical properties of the electrode. The cobalt based ZIF-67 as the precursor has opened the way for the design of highly performance electrodes for energy storage and electrochemical catalysis.

Optimal Variable Step Size for Simplified SAP Algorithm with Critical Polyphase Decomposition (임계 다위상 분해기법이 적용된 SAP 알고리즘을 위한 최적 가변 스텝사이즈)

  • Heo, Gyeongyong;Choi, Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1545-1550
    • /
    • 2021
  • We propose an optimal variable step size adjustment method for the simplified subband affine projection algorithm (Simplified SAP; SSAP) in a subband structure based on a polyphase decomposition technique. The proposed method provides an optimal step size derived to minimize the mean square deviation(MSD) at the time of updating the coefficients of the subband adaptive filter. Application of the proposed optimal step size in the SSAP algorithm using colored input signals ensures fast convergence speed and small steady-state error. The results of computer simulations performed using AR(2) signals and real voices as input signals prove the validity of the proposed optimal step size for the SSAP algorithm. Also, the simulation results show that the proposed algorithm has a faster convergence rate and good steady-state error compared to the existing other adaptive algorithms.