• Title/Summary/Keyword: Electronic band structure

Search Result 713, Processing Time 0.028 seconds

Analysis of Electromagnetic Wave Characteristics of Microwave Nondestructive Device for Inspecting Human Lower Leg (마이크로파 비파괴 검사를 위한 인체 하지에 대한 전자파특성 분석)

  • Kim, Byung-Mun;Lee, Sang-Min;Park, Young-Ja;Hong, Jae-Pyo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.2
    • /
    • pp.385-394
    • /
    • 2021
  • In this paper, a new equation of electromagnetic wave transmission matrix was proposed to calculate the reflected power and transmitted power for the multi-layered planar lossy structure. The applied human leg was modeled as a four-layer planar structure of skin, fat, muscle and bone. The complex dielectric constant to consider the loss of each of these layers was calculated using the 4-pole cole-cole model parameter. When electromagnetic waves were incident on the skin surface, total reflected and transmitted power, and human body loss were calculated for a frequency band of 0.1 to 20.0 GHz. And for various muscle thicknesses, the power reflected only from the outermost bone and re-radiated from the skin was calculated. It was confirmed that at the muscle thickness of 3.0 mm and the frequency of 4.6 GHz the return loss was -6.13 dB, which was 3.42 dB lower than the average value.

Optimization of Pose Estimation Model based on Genetic Algorithms for Anomaly Detection in Unmanned Stores (무인점포 이상행동 인식을 위한 유전 알고리즘 기반 자세 추정 모델 최적화)

  • Sang-Hyeop Lee;Jang-Sik Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.113-119
    • /
    • 2023
  • In this paper, we propose an optimization of a pose estimation deep learning model for recognition of abnormal behavior in unmanned stores using radio frequencies. The radio frequency use millimeter wave in the 30 GHz to 300 GHz band. Due to the short wavelength and strong straightness, it is a frequency with less grayness and less interference due to radio absorption on the object. A millimeter wave radar is used to solve the problem of personal information infringement that may occur in conventional CCTV image-based pose estimation. Deep learning-based pose estimation models generally use convolution neural networks. The convolution neural network is a combination of convolution layers and pooling layers of different types, and there are many cases of convolution filter size, number, and convolution operations, and more cases of combining components. Therefore, it is difficult to find the structure and components of the optimal posture estimation model for input data. Compared with conventional millimeter wave-based posture estimation studies, it is possible to explore the structure and components of the optimal posture estimation model for input data using genetic algorithms, and the performance of optimizing the proposed posture estimation model is excellent. Data are collected for actual unmanned stores, and point cloud data and three-dimensional keypoint information of Kinect Azure are collected using millimeter wave radar for collapse and property damage occurring in unmanned stores. As a result of the experiment, it was confirmed that the error was moored compared to the conventional posture estimation model.

A Study on Improved Open-Circuit Voltage Characteristics Through Bi-Layer Structure in Heterojunction Solar Cells (이종접합 태양전지에서의 Bi-Layer 구조를 통한 향상된 개방전압특성에 대한 고찰)

  • Kim, Hongrae;Jeong, Sungjin;Cho, Jaewoong;Kim, Sungheon;Han, Seungyong;Dhungel, Suresh Kumar;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.6
    • /
    • pp.603-609
    • /
    • 2022
  • Passivation quality is mainly governed by epitaxial growth of crystalline silicon wafer surface. Void-rich intrinsic a-Si:H interfacial layer could offer higher resistivity of the c-Si surface and hence a better device efficiency as well. To reduce the resistivity of the contact area, a modification of void-rich intrinsic layer of a-Si:H towards more ordered state with a higher density is adopted by adapting its thickness and reducing its series resistance significantly, but it slightly decreases passivation quality. Higher resistance is not dominated by asymmetric effects like different band offsets for electrons or holes. In this study, multilayer of intrinsic a-Si:H layers were used. The first one with a void-rich was a-Si:H(I1) and the next one a-SiOx:H(I2) were used, where a-SiOx:H(I2) had relatively larger band gap of ~2.07 eV than that of a-Si:H (I1). Using a-SiOx:H as I2 layer was expected to increase transparency, which could lead to an easy carrier transport. Also, higher implied voltage than the conventional structure was expected. This means that the a-SiOx:H could be a promising material for a high-quality passivation of c-Si. In addition, the i-a-SiOx:H microstructure can help the carrier transportation through tunneling and thermal emission.

Electrical Properties for Enhanced Band Offset and Tunneling with a-SiOx:H/a-si Structure (a-SiOx:H/c-Si 구조를 통한 향상된 밴드 오프셋과 터널링에 대한 전기적 특성 고찰)

  • Kim, Hongrae;Pham, Duy phong;Oh, Donghyun;Park, Somin;Rabelo, Matheus;Kim, Youngkuk;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.4
    • /
    • pp.251-255
    • /
    • 2021
  • a-Si is commonly considered as a primary candidate for the formation of passivation layer in heterojunction (HIT) solar cells. However, there are some problems when using this material such as significant losses due to recombination and parasitic absorption. To reduce these problems, a wide bandgap material is needed. A wide bandgap has a positive influence on effective transmittance, reduction of the parasitic absorption, and prevention of unnecessary epitaxial growth. In this paper, the adoption of a-SiOx:H as the intrinsic layer was discussed. To increase lifetime and conductivity, oxygen concentration control is crucial because it is correlated with the thickness, bonding defect, interface density (Dit), and band offset. A thick oxygen-rich layer causes the lifetime and the implied open-circuit voltage to drop. Furthermore the thicker the layer gets, the more free hydrogen atoms are etched in thin films, which worsens the passivation quality and the efficiency of solar cells. Previous studies revealed that the lifetime and the implied voltage decreased when the a-SiOx thickness went beyond around 9 nm. In addition to this, oxygen acted as a defect in the intrinsic layer. The Dit increased up to an oxygen rate on the order of 8%. Beyond 8%, the Dit was constant. By controlling the oxygen concentration properly and achieving a thin layer, high-efficiency HIT solar cells can be fabricated.

Electronic Structure of GaxIn1-xSbyAs1-y: Band Alignments Based on UTB Calculations (GaxIn1-xSbyAs1-y의 전자적 구조: UTB 방법에 의한 밴드정렬상태)

  • Shim, Kyu-Rhee
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.6
    • /
    • pp.461-467
    • /
    • 2011
  • The valence band maximum and the conduction band miminum of GaAs, GaSb, InAs, and InSb (constituent binaries of the quaternaty alloy $Ga_xIn_{1-x}Sb_yAs_{1-y}$) are calculated by using TB analytical approach method. The band alignment types of their heterojunctions are determined directly from their relative position of band edges (VBM and CBM). For example, the GaAs/InAs, GaAs/InSb, and GaSb/InSb are in a type-I, the GaAs/GaSb in a type-II, and the GaSb/InAs and InSb/InAs in a type-III, respectively. The composition dependent VBM and CBM for the $Ga_xIn_{1-x}Sb_yAs_{1-y}$ alloy are obtained by using the univeral tight binding method. For the alloyed heterojunctions, the band alignments can be controlled by changing the composition which induce a band type transition. For the alloy $Ga_xIn_{1-x}Sb_yAs_{1-y}$ lattice mathced to GaSb, the type-II band alignment in the region of $x{\leq}0.15$ is changed to the type-III in the region of $x{\geq}0.81$. On the other hand, the alloy $Ga_xIn_{1-x}Sb_yAs_{1-y}$ lattice mathced to InAs has the type-II band alignment in the region of $x{\leq}0.15$ and the type-III band alignment in the region of $x{\geq}0.81$, respectively.

Design and Fabrication of the Antenna for Wibro and WLAN Communications Using CPWG Structure (CPWG 구조를 이용한 Wibro 및 WLAN 통신용 안테나 설계 및 제작)

  • Lee, Seung-Woo;Kim, Nam;Rhee, Seung-Yeop
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.10
    • /
    • pp.1086-1095
    • /
    • 2008
  • In this paper, we designed and fabricated the trapezoidal antenna using the CPWG structure for Wibro and WLAN communications. This antenna has broadband characteristics using the basic trapezoidal antenna, and an H-shaped parasitic patch is making an expansion of resonance bandwidth and bringing stability of impedance matching. Especially, CPWG structure is combined two kinds of the structure which of a monopole antenna and a coplanar waveguide antenna. They make up for the weak point of the CPW which is variation of impedance matching according to varying the gap or size of the feed line and the ground. The designed antenna has occurred resonances of which the band of 2.2 GHz to 4.6 GHz(70.5 %) below the return loss of -10 dB($VSWR{\leq}2$) obtained in measurement, and it has an omnidirectional radiation pattern of H-plane. In addition, the changes of impedance matching appear slightly caused by the effects of the ground plane and the feed line.

A Design and Manufacture of Antenna with DGS(Defected Ground System) for WLAN/WiMAX system (WLAN/WiMAX 시스템 적용을 위한 DGS를 갖는 삼중대역 안테나 설계 및 제작)

  • Seo, Na-Hyun;Rhee, Young-Chul;Yoon, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.4
    • /
    • pp.679-687
    • /
    • 2017
  • In this paper, a microstrip-fed triple-band monopole antenna with DGS (Defected Ground Structure) for WLAN/WiMAX applications was proposed. The proposed antenna is based on a microstrip-fed structure, and composed of two strip lines and DGS structure and then designed in order to get triple band characteristics. We carried out simulation about parameters. Adjusted the position and length of the two strips and three slits, we get the optimized parameters. The proposed antenna is fabricated on an FR-4 substrate of which the dielectric constant is 4.4, and its overall size is $34mm(W_1){\times}34mm(L_1){\times}1.6mm(t)$, and its proposed antenna size is $17.0mm(W_6){\times}30.75mm(L_3+L_4+L_9)$. From the fabricated and measured results, return loss of the proposed antenna satisfied return loss -10dB bandwidth 360 MHz (2.335~2.695 GHz), 645 MHz (3.37~4.015 GHz) and 1,770 MHz (5.14~6.91 GHz). And measured results of gain and radiation patterns characteristics displayed for operating bands.

Influence of Ammonia and Na2EDTA on Properties of Chemical Bath Deposited ZnS Thin Films (화학적 용액성장법에 의한 ZnS 박막의 제조 시 ammonia 및 Na2EDTA의 영향)

  • Kim, Gwan-Tae;Lee, Hae-Ki;Park, Byung-Ok
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.3
    • /
    • pp.105-110
    • /
    • 2013
  • ZnS thin films were prepared on glass substrate by using chemical bath deposition method. The influence of ammonia ($NH_4OH$) and $Na_2EDTA$ ($Na_2C_{10}H_{16}N_2O_8$) as complexing agents on structural and optical properties of ZnS thin films were investigated. Zinc acetate dihydrate ($Zn(CH_3COO)_2{\cdot}2H_2O$) and thiourea ($H_2NCSNH_2$) were used as a starting materials and distilled water was used as a solvent. All ZnS thin films, regardless of a kind of complexing agents, had the hexagonal structure (${\alpha}$-ZnS) and had a preferred <101> orientation. ZnS thin films, with 4 M ammonia and with 4 M ammonia and 0.1 M $Na_2EDTA$, had the highest <101> peak intensity. In addition, their average particle size are 280 nm and 220 nm, respectively. The average optical transmittances of all films were higher than 60% in the visible range. The optical direct band gap values of films were about 3.6~3.8 eV.

800MHz Band Dual-fed ICS Repeater Antenna with High Isolation (800MHz 대역 고격리 이중급전 ICS 중계기 안테나)

  • Ko, Jin-Hyun;Kim, Gun-Kyun;Rhee, Seung-Yeop;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.867-873
    • /
    • 2016
  • Even if ICS(Interference Cancellation System) repeater is used in wireless communication system, it has the disadvantage that it must have enough distance between Donor and Service antenna to be isolated. In this paper, new ICS repeater integrated antenna with high insolation characteristics is designed. The proposed antenna is fabricated for 800MHz and measured. Bandwidth and gain are optimized by changing the stub lengths near main patch and power divider, and also by changing the size of parasitic patch. The fabricated antenna has a return loss less than -13 dB, a gain over 3 dBi, and an isolation between the donor and the server antennas less than -56 dB from 824~894 MHz for CDMA mobile communication. Therefore, the proposed antenna structure can be applied to eliminate the shadow area and to expand the coverage area for any other wireless communication bands.

Optical Probing of Electronic Interaction between Graphene and Hexagonal Boron Nitride (hBN)

  • Ahn, Gwanghyun;Kim, Hye Ri;Ko, Taeg Yeoung;Choi, Kyoungjun;Watanabe, Kenji;Taniguchi, Takashi;Hong, Byung Hee;Ryu, Sunmin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.213-213
    • /
    • 2013
  • Even weak van der Waals (vdW) adhesion between two-dimensional solids may perturbtheir various materials properties owing to their low dimensionality. Although the electronic structure of graphene has been predicted to be modified by the vdW interaction with other materials, its optical characterization has not been successful. In this report, we demonstrate that Raman spectroscopy can be utilized to detect a few % decrease in the Fermi velocity ($v_F$) of graphene caused by the vdW interaction with underlying hexagonal boron nitride (hBN). Our study also establishes Raman spectroscopic analysis which enables separation of the effects by the vdW interaction from those by mechanical strain or extra charge carriers. The analysis reveals that spectral features of graphene on hBN are mainly affected by change in vF and mechanical strain, but not by charge doping unlike graphene supported on $SiO_2$ substrates. Graphene on hBN was also found to be less susceptible to thermally induced hole doping.

  • PDF