• Title/Summary/Keyword: Electronic Transformers

Search Result 216, Processing Time 0.037 seconds

Design and Manufacture of Step-down Piezoelectric Transformers Multi-layered by Ceramic Sheets (적층형 압전세라믹을 이용한 강압용 압전변압기의 설계 및 제조)

  • 정현호;이원재;김인성;송재성;박태곤
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.680-683
    • /
    • 2001
  • The output characteristics of step-down piezoelectric transformer is changed by a structure of layers. In this paper, we simulated output characteristics of multi-layer piezoelectric transformers with variation of output layers. Also, fabricated piezoelectric transformers were compared with simulated data. From simulated piezoelectric transformers, the output voltage decreased with increasing number of layers. From these results, piezoelectric transformers were made and the output electrical power of the transformers was measured at resonance frequency and at other frequency. The electrical power of transformers was measured on each transformer's resonance mode. However, measured value of 12-layed transformer's output power was smaller than that of 6-layered transformer's one. It is supposed that internal capacitance and reactance of the piezoelectric transformer's were effected in this result. Therefore we need to connect other road resistance and capacitance in output circuit, in order to increase electrical power of transformers.

  • PDF

The New Thick-Film Hybrid Converters For Halogen and Fluorescent Lamps

  • Gondek, J.;Dzialek, K.;Kocol, J.;Kawa, B.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.2
    • /
    • pp.43-48
    • /
    • 2001
  • Economical consumption of energy, longer life of lamps, higher lighting comfort and new aesthetic of illumination is subject of numerous research and development works. The halogen lamps are an example of positive solution some of above mentioned problems. The electronic transformers are more frequent used for their supply. In comparison with conventional transformers they have less weight, less volume and 60% less power losses. Their advantages are particular visible, when the hybrid technique is applied. The paper presents the results of engineering research and development works carried out in Private Institute of Electronic Engineering, in R. & D. Center for Hybrid Microelectronics and Resistors and in Technical School of Communications in Krakow, in the field of the design and exploitation tests of hybrid converters 220V AC /12V DC (electronic transformers) and electronic ballasts destined for the supply of halogen lamps 20W to 150W and fluorescent lamps respectively. To perform the converters, thick film technology and surface mount technology were used. For the protection of converter electronic circuit the thick film temperature sensor and transistors were applied. Moreover the paper presents the base application circuits of elaborated converters, their technical parameters and exploitation results. The development perspectives of such domain of hybrid circuits are also discussed.

  • PDF

Coreless Printed Circuit Board (PCB) Transformers - Fundamental Characteristics and Application Potential

  • Hui S. Y.;Tang S. C.;Chung H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.1-6
    • /
    • 2001
  • In this article, the fundamental concept, characteristics and application potentials of coreless printed-circuit-board (PCB) transformers are described. Coreless PCB transformers do not have the limitations associated with magnetic cores, such as the frequency limitation, magnetic saturation and core losses. In addition, they eliminate the manual winding process and its associated problems, including labor cost, reliability problems and difficulties in ensuring transformer quality in the manufacturing process. The parameters of the printed windings can be precisely controlled in modern PCB technology. Because of the drastic reduction in the vertical dimension, coreless PCB transformers can achieve high power density and are suitable for applications in which stringent height requirements for the circuits have to be met. A transformer's power density of $24W/cm^2$ has been reported in a power conversion application. When used in an isolation amplifier application, coreless PCB transformers tested so far enable the amplifier to achieve a remarkable linear frequency range of 1MHz, which is almost eight times higher than the frequency range of 120kHz in existing Integrated-Circuit products. PCB materials offer extremely high isolation voltage, typically from 15kV to 40kV, which is higher than many other isolation means such as optocouplers. It is envisaged that coreless PCB transformers can replace traditional core-based transformers in some industrial applications. Their application potentials deserve more attention and exploration.

  • PDF

THE NEW THICK-FILM HYBRID CONVERTERS FOR HALOGEN AND FLUORESCENT LAMPS

  • Gondek, J.;Dzialek, K.;Kocol, J.;Kawa, B.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.04a
    • /
    • pp.57-65
    • /
    • 2001
  • Economical consumption of energy, longer life of lamps, higher lighting comfort and new aesthetic of illumination is subject of numerous research and development works. The halogen lamps are an example of positive solution some of above mentioned problems. The electronic transformers are more frequent used for their supply. In comparison with conventional transformers they have less weight, less volume and 60% less power tosses. Their advantages are particular visible, when the hybrid technique is applied. The paper presents the results of engineering research and development works carried out ill Private Institute of Electronic Engineering, in R. & D. Center for Hybrid Microelectronics and Resistors and in Technical School of Communications in Krakow, in the field of the design and exploitation tests of hybrid converters 220V AC /12V DC (electronic transformers) and electronic ballasts destined for the supply of halogen lamps 20W to 150W and fluorescent lamps respectively. To perform the converters, thick film technology and surface mount technology were used. For the protection of converter electronic circuit the thick film temperature sensor and transistors were applied. Moreover the paper presents the base application circuits of elaborated converters, their technical parameters and exploitation results. The development perspectives of hybrid domain of hybrid circuits are also discussed.

  • PDF

Improving the Dynamic Performance of Distribution Electronic Power Transformers Using Sliding Mode Control

  • Hooshmand, Rahmat-Allah;Ataei, Mohammad;Rezaei, Mohammad Hosein
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.145-156
    • /
    • 2012
  • These days, the application of electronic power transformers (EPTs) is expanding in place of ordinary power transformers. These transformers can transmit power via three or four wire converters. Their dynamic performance is extremely important, due to their complex structure. In this paper, a new method is proposed for improving the dynamic performance of distribution electronic power transformers (DEPT) by using sliding mode control (SMC). Hence, to express the dynamic characteristics of a system, different factors such as the voltage unbalance, voltage sag, voltage harmonics and voltage flicker in the system primary side are considered. The four controlling aims of the improvement in dynamic performance include: 1) maintaining the input currents so that they are in sinusoidal form and in phase with the input voltages so they have a unity power factor, 2) keeping the dc-link voltage within the reference amount, 3) keeping the output voltages at a fixed amount and 4) keeping the output voltages in sinusoidal and symmetrical forms. Simulation results indicate the potential and capability of the proposed method in improving DEPT behavior.

A Research on Characteristics Tests for Current Transformers with Maximum mA Secondary Current of 250 mA (250 mA 이하 출력전류를 갖는 전류변성기 특성평가 연구)

  • Song, Kwang-Jae;Lee, Il-Ho;Song, Sang-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2127-2137
    • /
    • 2016
  • In this paper, characteristic tests for current transformers with maximum mA secondary current of 250 mA is performed. The purpose of this paper is not only to test the mA current transformers by following the IEEE Draft Standard for Current Transformers with Maximum mA Secondary Current of 250mA, but also to take into consideration certain applications in the use of the mA CTs for billing purposes.

Performance test of an electronic instrument transformer mounted an error compensating method for instrument transformer (변성기의 오차 보상 방법이 탑재된 전자식 변성기의 성능 평가)

  • Kang, Yong-Cheol;Park, Jong-Min;Jang, Sung-Il;Yun, Jae-Sung;Kim, Yong-Gyun;Lee, Byung-Sung;Song, Il-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.760-761
    • /
    • 2007
  • Instrument transformers provide the reproduction of the primary current or voltage to the measuring and protecting devices. The errors of an iron-cored transformer are caused by the difference between the primary and secondary currents due to the hysteresis characteristics of the iron-core. An error compensating algorithm for instrument transformer can improve the accuracy of conventional current and voltage transformers. This paper describes the performances of the electronic current and voltage transformers mounted an error compensating algorithm. The test results of the electronic transformers in Korea Electrotechnology Research Institute(KERI) are presented.

  • PDF

A Sensitivity Measurement of Ultrasonic Signals by PZT Sensor (PZT 센서를 이용한 초음파 신호 감도측정)

  • 최인혁;권동진;윤장완;정길조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.403-405
    • /
    • 1999
  • Power transformers have a tendency of ultra-high voltage and huge capacity as power demand increases day after day. Therefore, the fault by insulation destruction gives rise to large area of power failure in huge capacity transformers. On-line predictive diagnostics is very important In power transformers because of economic loss and its spreading effect. Hence, this study presents experiments of partial discharge method using ultrasonic sensor in order to confirm the possibility of ultrasonic sensor in power transformers. It carries out the experiments of measuring delay time between ultrasonic sensor and transducer, sensitiities by temperature change of oil and by barriers inside transformers. It is also Included wave analysis by ultrasonic sensor for needle-plate electrode powered on through high-voltage equipments.

  • PDF

Study on Failure Diagnosis of Power Transformer Using FRA

  • Sano, Takahiro;Miyagi, Katsunori
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.324-329
    • /
    • 2006
  • As the average usage period of transformers increases, it is becoming increasingly necessary to know the internal condition of transformers. It is therefore critically important to establish monitoring and diagnostic techniques that can perform transformer condition assessment. Frequency response analysis, generally known as FRA, is one of the technologies to diagnose transformers. Using case studies, this paper presents the effectiveness of FRA as measurements for detecting transformer failures. This paper introduces the fact that FRA waveforms have useful information about diagnosis of failure on core earths and winding shield, and that the condition outside transformers can affect frequency response characteristics.

Development of the iron-cored electronic voltage transformer (철심 코어형 전자식 전압 변성기 개발)

  • Kang, Yong-Cheol;Park, Jong-Min;Jang, Sung-Il;Kim, Yeon-Hee;Choi, Jung-Hwan;Kim, Yong-Kyun;Song, In-Jun;An, Yong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.138-139
    • /
    • 2008
  • An iron-cored voltage transformer(VT) is usually used to obtain the standard low voltage signal for protection and measurement. Generally, the iron-cored transformers have errors due to the hysteresis characteristics of the iron-core. An error compensating algorithm for iron-cored instrument transformer can improve the accuracy of conventional voltage transformers. This paper describes the iron-cored electronic voltage transformer having the error compensating algorithm. The innovative product composes an iron-cored VT and an intelligent electronic device(IED) having the error compensating algorithm. The test results of the iron-cored electronic voltage transformers in Korea Electro-technology Research Institute(KERI) are presented.

  • PDF