• Title/Summary/Keyword: Electronic Material Use

Search Result 887, Processing Time 0.025 seconds

Review on the Recent Advances in Composite Based Highoutput Piezo-Triboelectric Energy Harvesters (압전-마찰전기 복합 소재 기반의 고출력 에너지 하베스팅 기술 개발 리뷰)

  • Rasheed, Aamir;Park, Hyunje;Sohn, Min Kyun;Lee, Tae Hyeong;Kang, Dae Joon
    • Ceramist
    • /
    • v.23 no.1
    • /
    • pp.54-88
    • /
    • 2020
  • Global effort has resulted in tremendous progress with energy harvesters that extract mechanical energy from ambient sources, convert it to electrical energy, and use it for systems such as wrist watches, mobile electronic devices, wireless sensor nodes, health monitoring, and biosensors. However, harvesting a single energy source only still pauses a great challenge in driving sustainable and maintenance-free monitoring and sensing devices. Over the last few years, research on high-performance mechanical energy harvesters at the micro and nanoscale has been directed toward the development of hybrid devices that either aim to harvest mechanical energy in addition to other types of energies simultaneously or to exploit multiple mechanisms to more effectively harvest mechanical energy. Herein, we appraise the rational designs for multiple energy harvesting, specifically state-of-the-art hybrid mechanical energy harvesters that employ multiple piezoelectric and triboelectric mechanisms to efficiently harvest mechanical energy. We identify the critical material parameters and device design criteria that lead to high-performance hybrid mechanical energy harvesters. Finally, we address the future perspectives and remaining challenges in the field.

A Design of Ferrite Electromagnetic Wave Absorber for Anechoic Chamber (전파무향실용 페라이트 전파흡수체의 설계)

  • 이창우;김동일;김하근
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1998.11a
    • /
    • pp.408-413
    • /
    • 1998
  • Electromagnetic wave absorbers for anechoic chamber are needed to broaden the useful frequency bandwidth, reduce the thickness, and decrease the weight. There are various absorbers proposed for the above conditions, but they could not decisively solve it the alone requirements. The Electromagnetic wave absorber made by a conventional ferrite tile has, for example, broadened the useful frequency bandwidth by the way of forming air layer(practically use urethane foam, etc.) on the ferrite tile. Therefore, an air layer is formed between a reflection plate and a sintered Ni-Zn ferrite tile of 7 mm in thickness, which has reflectivity less than -20 dB from 30 MHz to 600 MHz in bandwidth. Accordingly, in this paper, a broadened electromagnetic wave absorber will be designed, which has the reflection characteristics less than -20 dB from 30 MHz to 6000 MHz in the bandwidth. Then we will design a super broadband electromagnetic wave absorber by inserting square Ferrite Cylinders Type with the thickness less than 11 m and with the frequency band from 30 MHz to 6000 MHz under the above tolerance limits. The purpose of this research is on the development of a universal anechoic chamber for measuring radiated electromagnetic wave or immunity of electronic equipments, GTEM-cell, wall material for prevention TV ghost, etc.

  • PDF

An Improved Calculation Model for Analysis of [111] InGaAs/GaAs Strained Piezoelectric Superlattices

  • Kim, Byoung-Whi;Yoo, Jae-Hoon;Kim, Soo-Hyung
    • ETRI Journal
    • /
    • v.21 no.4
    • /
    • pp.65-82
    • /
    • 1999
  • We present a calculation model for an improved quantitative theoretical analysis of electronic and optical properties of strained-piezoelectric[111] InGaAs/GaAs superlattices (SLs). The model includes a full band-coupling between the four important energy bands: conduction, heavy, light, and spin split-off valence bands. The interactions between these and higher lying bands are treated by the k ${\cdot}$ p perturbation method. The model takes into account the differences in the band and strain parameters of constituent materials of the heterostructures by transforming it into an SL potential in the larger band-gap material region. It self-consistently solves an $8{\times}8$ effective-mass $Schr{\ddot{o}}dinger$ equation and the Hartree and exchange-correlation potential equations through the variational procedure proposed recently by the present first author and applied to calculate optical matrix elements and spontaneous emission rates. The model can be used to further elucidate the recent theoretical results and experimental observations of interesting properties of this type of quantum well and SL structures, including screening of piezoelectric field and its resultant optical nonlinearities for use in optoelectronic devices.

  • PDF

Thermally Stimulated Currents in Gamma Irradiated Polymer (감마선에 조사된 중합체의 열자극 전류)

  • Chu, Sung-Sil
    • Journal of Radiation Protection and Research
    • /
    • v.7 no.1
    • /
    • pp.49-55
    • /
    • 1982
  • Thermally stimulated currents of polymers have some properties as radiation dosimetry, especially polymer could be made as a good dosimeter in biological fields because of tissue equivalent material. We experimented the radiation response of polymers and attempted to apply it in clinical use. Polymers have the properties of thermoluminescence and thermally stimulated currents which are due to several kinds of charged particles such as dipoles, electronic trapped charges and mobile ions. Several peaks are datected in the thermally stimulated currents in polyethylene under vias field V, by heating from room temperature to $100^{\circ}C$ shortly after irradiation. As V increases, both the peak temperature $T_m$ and the activation energy H decreases, while the peak current $I_m$ increases. We plotted the $T_m-V\;and\;I_m-V$ curves and calculated the electron trap depth with the recombination operative TSC theory and compared the peak TSC with radiation doses.

  • PDF

Growth Mechanism of Graphene structure on 3C-SiC(111) Surface: A Molecular Dynamics Simulation

  • Hwang, Yu-Bin;Lee, Eung-Gwan;Choe, Hui-Chae;Jeong, Yong-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.433-433
    • /
    • 2011
  • Since the concept of graphene was established, it has been intensively investigated by researchers. The unique characteristics of graphene have been reported, the graphene attracted a lot of attention for material overcomes the limitations of existing semiconductor materials. Because of these trends, economical fabrication technique is becoming more and more important topic. Especially, the epitaxial growth method by sublimating the silicon atoms on Silicon carbide (SiC) substrate have been reported on the mass production of high quality graphene sheets. Although SiC exists in a variety of polytypes, the 3C-SiC polytypes is the only polytype that grows directly on Si substrate. To practical use of graphene for electronic devices, the technique, forming the graphene on 3C-SiC(111)/Si structure, is much helpful technique. In this paper, we report on the growth of graphene on 3C-SiC(111) surface. To investigate the morphology of formed graphene on the 3C-SiC(111) surface, the radial distribution function (RDF) was calculated using molecular dynamics (MD) simulation. Through the comparison between the kinetic energies and the diffusion energy barrier of surface carbon atoms, we successfully determined that the graphitization strongly depends on temperature. This graphitization occurs above the annealing temperature of 1500K, and is also closely related to the behavior of carbon atoms on SiC surface. By analyzing the results, we found that the diffusion energy barrier is the key parameter of graphene growth on SiC surface.

  • PDF

Characteristics of Parylene Polymer and Its Applications (파릴렌 고분자의 특성 및 응용)

  • Yoon Young-Soo;Choi Sun-Hee;Kim Joo-Sun;Nam Sang-Cheol
    • Korean Journal of Materials Research
    • /
    • v.14 no.6
    • /
    • pp.443-450
    • /
    • 2004
  • Parylene polymer thin film shows excellent homogeneous coverage chracteristics when it was deposited onto very complex three dimensional solid matters, such as deep hole and micro crack. The parylene deposition process can be conducted at room temperature although most of chemical vapor deposition processes request relatively high processing temperature. Therefore, the parylene coating process does not induce any thermal problems. Parylene thin film is transparent and has extremly high chemical stability. For example, it shows high chemical stability with high reactive chemical solutions such as strong acid, strong alkali and acetone. The bio-stability of this material gives good chances to use for a packaging of biomedical devices and electronic devices such as display. In this review article, principle of deposition process, properties and application fields of parylene polymer thin film are introduced.

Dynamic Magneto-mechanical Behavior of an Iron-nickel-based Ferromagnetic Alloy with Constant Elasticity

  • Bian, Leixiang;Wen, Yumei;Li, Ping;Gao, Qiuling;Liu, Xianxue
    • Journal of Magnetics
    • /
    • v.14 no.2
    • /
    • pp.66-70
    • /
    • 2009
  • The dynamic magneto-mechanical behaviors in a type of iron-nickel-based ferromagnetic alloy with constant elasticity were investigated as a function of both the DC bias magnetic field ($H_{dc}$) and the frequency. The rectangular plate-like samples were excited to vibrate at a half-wavelength, longitudinal resonance by an AC magnetic field superimposed with various $H_{dc}$. The experimental results found that the strain coefficient at resonance reached 819.34 nm/A and the effective mechanical quality factor ($Q_m$) was greater than 2000. The ratio of the maximum variation of the Young's modulus over $H_{dc}$ to the value of the Young's modulus at a zero bias field was only ${\sim}0.83%o$ because of the so-called constant elasticity. The resonant strain coefficients and $Q_m$ are strongly dependent on $H_{dc}$, which indicates a promising potential for use in DC and quasistatic magnetic field sensing.

A study on importance of MSDS education (MSDS 교육의 중요성에 관한 연구)

  • Choi, Sung-Jai
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.6
    • /
    • pp.209-215
    • /
    • 2015
  • Following the semiconductor industry's growing, various types of toxic gases and caustic chemicals, HF(Hydrofluoric acid), HCI (Hydochloric acid), $H_2O_2$ (Hydrogen peroxide), $H_2SO_4$ (Sulfuric acid), and Piranha, were using on the semiconductor manufacturing process. Therefore many gas leakage accidents that produce huge losses of lives were caused by the processes. This research deeply considers two basic solutions that the necessity of MSDS education on university for reducing damage of lives and protecting life from chemical leak accidents such as a HF accident in Gumi, Korea and the use of GHS, REACH and the comprehension of propriety about using MSDS for keeping safety from conflagrations by released poison chemical materials.

A Study on Fabrication and Evaluation of Ferrite Electromagnetic Wave Absorber

  • Kim, Dong-Il;Bae, Jae-Young;Son, June-Young;Won, Young-Soo;Song, Jae-Man
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.1
    • /
    • pp.95-99
    • /
    • 2001
  • According to the progress of the electronic industy and radio communication technologies, mankind might enjoy its abundant life On the other hand, many social problems such as EMI, and unnecessary electromagnetic wave occur due to the increased use of electromagnetic wave. Therefore, the organiztions such as CISPR, FCC, ANSl,etc. have provided the standard of electromagnetic wave enviroment for the countermeasure of the EMC. It had been required that the absorbing ability of an electromagnetic wave absorber is more than 20 dB, the bandwidth of which is required through 30 MHz to 1,000 MHz for satisfying the international standard about an anechoic chamber for EMI/EMS measurment. From November of 1998, however, the CISPRll has accepted the extended frequency band from 1 GHz to 18 GHz additionally in the bandwidth of EMI measurementent$^{[1]}$ . In this paper, we proposed a new type absorber satisfying the above requirements and carried out broadband design using the equivalent material constants method. Futheremore, the experiments were carried out over the frequency band from 30 MHz to 2 GHz, and hence, the validity of the proposed design theory was confirmed.

  • PDF

An Overview of Self-Grown Nanostructured Electrode Materials in Electrochemical Supercapacitors

  • Shinde, Nanasaheb M.;Yun, Je Moon;Mane, Rajaram S.;Mathur, Sanjay;Kim, Kwang Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.5
    • /
    • pp.407-418
    • /
    • 2018
  • Increasing demand for portable and wireless electronic devices with high power and energy densities has inspired global research to investigate, in lieu of scarce rare-earth and expensive ruthenium oxide-like materials, abundant, cheap, easily producible, and chemically stable electrode materials. Several potential electrode materials, including carbon-based materials, metal oxides, metal chalcogenides, layered metal double hydroxides, metal nitrides, metal phosphides, and metal chlorides with above requirements, have been effectively and efficiently applied in electrochemical supercapacitor energy storage devices. The synthesis of self-grown, or in-situ, nanostructured electrode materials using chemical processes is well-known, wherein the base material itself produces the required phase of the product with a unique morphology, high surface area, and moderate electrical conductivity. This comprehensive review provides in-depth information on the use of self-grown electrode materials of different morphologies in electrochemical supercapacitor applications. The present limitations and future prospects, from an industrial application perspectives, of self-grown electrode materials in enhancing energy storage capacity are briefly elaborated.