• Title/Summary/Keyword: Electronic Loads

Search Result 245, Processing Time 0.029 seconds

Analysis of Harmonic Currents Propagation on the Self-Excited Induction Generator with Nonlinear Loads

  • Nazir, Refdinal
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1935-1943
    • /
    • 2014
  • In recent years, the induction machines are increasingly being used as self-excited induction generators (SEIG). This generator is especially widely employed for small-scale power plants driven by renewable energy sources. The application of power electronic components in the induction generator control (IGC) and the loading of SEIG using nonlinear loads will generate harmonic currents. This paper analyzes the propogation of harmonic currents on the SEIG with nonlinear loads. Transfer function method in the frequency domain is used to calculate the gain and phase angle of each harmonic current component which are generated by a nonlinear loads. Through the superposition approach, this method has also been used to analyze the propagation of harmonic currents from nonlinear load to the stator windings. The simulation for the propagation of harmonic currents for a 4 pole, 1.5 kW, 50Hz, 3.5A, Y-connected, rotor-cage SEIG with energy-saving lamps, have provided results almost the same with the experiment. It can prove that the validity of the proposed models and methods. The study results showed that the propagation of harmonic currents on the stator windings rejects high order harmonics and attenuates low order harmonics, consequently THDI diminish significantly on the stator windings.

Comparative Study on 220V AC Feed System and 300V DC Feed System for Internet Data Centers

  • Kim, Hyo-Sung
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.157-163
    • /
    • 2012
  • Internet Data Centers (IDCs), which are essential facilities in the modern IT industry, typically have scores of MW of concentrated electric loads. The provision of an Uninterruptible Power Supply (UPS) is necessary for the power feed system of IDCs owing to the need for stable power. Thus, conventional IDC AC power feed systems have three cascaded power conversion stages, (AC-DC), (DC-AC), and (AC-DC), resulting in a very low conversion efficiency. In comparison, DC power feed systems require only a single power conversion stage (AC-DC) to supply AC main power to DC server loads, resulting in comparatively high conversion efficiency and reliability [4-11]. This paper compares the efficiencies of a 220V AC power feed system with those of a 300V DC power feed system under equal load conditions, as established by the Mok-Dong IDC of Korea Telecom Co. Ltd. (KT). Experimental results show that the total operation efficiency of the 300V DC power feed system is approximately 15% higher than that of the 220V AC power feed system.

Development of Current Harmonics Estimation Method by Considering the Characteristics of Input Voltage (인가전압의 특성을 고려한 주거용 부하의 전류성분 추정기법 개발)

  • Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.181-185
    • /
    • 2011
  • Due to the increasing of nonlinear loads such as converters and inverters connected to the electric power distribution system, and extensive application of harmonic generation sources with power electronic devices, disturbance of the electric power system and its influences on industries have been continuously increasing. Thus, it is difficult to construct accurate load model for active and reactive power in environments with harmonics. In this research, we develop current harmonics estimation method based on Extreme Learning Machine (ELM) with fast learning procedure for residential loads. Using data sets acquired from various residential loads, the proposed method has been intensively tested. As the experimental results, we confirm that the proposed method makes it possible to effective estimate current harmonics for various input voltage.

Optimal Capacity Design and Economic Evaluation of Hybrid Generation Systems Based on the Load Characteristics (부하특성에 따른 복합발전시스템의 최적용량 설계 및 경제성 분석)

  • Lim, Jong Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.10
    • /
    • pp.1103-1109
    • /
    • 2013
  • This paper presents an optimal capacity design of a Hybrid generation system based on economical evaluation for various loads. Optimal sizes of a standalone and grid connection wind- PV hybrid systems were designed for normal, residential and industrial loads using HOMER (Hybrid Optimization Model for Electronic Renewable). Their economical evaluation were performed and compared with a diesel generation system that covers the same loads. The results showed that the stand alone hybrid generation system can be more economical than a diesel generation system for long term operation.

Optimal Configuration of Distribution Network using Genetic Algorithms

  • Kim, Intaek;Wonhyuk Cho
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.625-628
    • /
    • 1998
  • This paper presents an application of genetic algorithms(GAs) for optimal configuration of distribution network. Three problems have been used to show how genetic algorithms are modified and applied. Solutions to the problems are found by minimizing the cost function which is directly related with balancing the loads. Simulation results show that genetic algorithms are technically feasible if they are tailored to meet the needs of real problems.

  • PDF

A Study on the Electronic Ballast for Neon Lamp (네온 램프용 전자식 안정기에 관한 연구)

  • 강범석;김희준
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.314-318
    • /
    • 1998
  • This paper discusses the development of electronic ballast for neon lamp as an application of a zero voltage switching high frequency inverter. Abnormal increase of secondary voltage due to grounded fault or partial damage of serial arranged loads is clarified and the protection circuit for this abnormal voltage increase is proposed. Also stable lighting condition for removing the unstable characteristics due to different load conditions is proposed.

  • PDF

Design of launch pad for mitigating acoustic loads on launch vehicle at liftoff (우주발사체 발사 시 음향하중 저감을 위한 발사대 설계)

  • Tsutsumi, Seiji
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.331-341
    • /
    • 2020
  • At liftoff, launch vehicles are subject to harmful acoustic loads due to the intense acoustic waves generated by propulsion systems. Because these waves can cause electronic and mechanical components of launch vehicles and payloads to fail, predicting and mitigating acoustic loads is an important design issue. This article presents the latest information about the generation of acoustic waves and the acoustic design methods applicable to the launch pad. The development of the Japanese Epsilon solid launcher is given as an example of the new methodology for launch pad design. Computational fluid dynamics together with 1/42 scale model testing were performed for this development. Effectiveness of the launch pad design to reduce acoustic loads was confirmed by the post-flight analysis.

Dynamic response analysis of closed loop control system for intelligent truss structures based on probability

  • Gao, W.;Chen, J.J.;Ma, H.B.;Ma, X.S.;Cui, M.T.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.2
    • /
    • pp.239-248
    • /
    • 2003
  • The dynamic response analysis of closed loop control system based on probability for the intelligent truss structures with random parameters is presented. The expressions of numerical characteristics of structural dynamic response of closed loop control system are derived by means of the mode superposition method, in which the randomness of physical parameters of structural materials, geometric dimensions of active bars and passive bars, applied loads and control forces are considered simultaneously. The influences of the randomness of them on structural dynamic response are inspected by several engineering examples and some significant conclusions are obtained.

Control of the Bidirectional DC/DC Converter for a DC Distribution Power System in Electric Vehicles (전기 자동차의 DC 배전 시스템을 위한 양방향 DC/DC 컨버터의 제어)

  • Chang, Han-Sol;Lee, Joon-Min;Kim, Choon-Tack;La, Jae-Du;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.943-949
    • /
    • 2013
  • Recently, an electric vehicle (EV) has been become a huge issue in the automotive industry. The EV has many electrical units: electric motors, batteries, converters, etc. The DC distribution power system (DPS) is essential for the EV. The DC DPS offers many advantages. However, multiple loads in the DC DPS may affect the severe instability on the DC bus voltage. Therefore, a voltage bus conditioner (VBC) may use the DC DPS. The VBC is used to mitigate the voltage transient on the bus. Thus, a suitable control technique should be selected for the VBC. In this research, Current controller with fixed switching frequency is designed and applied for the VBC. The DC DPS consist of both a resistor load and a boost converter load. The load variations cause the instability of the DC DPS. This instability is mitigated by the VBC. The simulation results by Matlab simulink and experimental results are presented for validating the proposed VBC and designed control technique.

Stress Analysis for Bendable Electronic Module Under Thermal-Hygroscopic Complex Loads (열·습도 복합하중에서의 유연성 전자모듈에 대한 구조해석)

  • Han, Changwoon;Oh, Chulmin;Hong, Wonsik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.619-624
    • /
    • 2013
  • A bendable electronic module is developed. In this module, thin silicon electronic chips are embedded in a polymer-based encapsulating adhesive between flexible copper-clad polyimide layers. During the qualification test of a harshly thermal-hygroscopic complex loading condition, delaminations occur inside the module layers. A finite element model is developed for the module. To investigate the effect of hygroscopic stress on delamination, the results of the thermal and thermal-hygroscopic loads are compared. The analysis results reveal that the hygroscopic effect more strongly affects delamination than does the thermal effect. The potential failure mechanisms of the module are investigated based on the stress analysis.