• Title/Summary/Keyword: Electronic Loads

Search Result 245, Processing Time 0.023 seconds

Harmonic Current Compensation based on Three-phase Three-level Shunt Active Filter using Fuzzy Logic Current Controller

  • Salim, Chennai;Benchouia, M.T.;Golea, A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.595-604
    • /
    • 2011
  • A three-phase three-level shunt active filter controlled by fuzzy logic current controller which can compensate current harmonics generated by nonlinear loads is presented. Three-level inverters and fuzzy controllers have been successfully employed in several power electronic applications these past years. To improve the conventional pwm controller performance, a new control scheme based on fuzzy current controller is adopted for three-level (NPC) shunt active filter. The scheme is designed to improve compensation capability of APF by adjusting the current error using a fuzzy rule. The inverter current reference signals required to compensate harmonic currents use the synchronous reference detection method. This technique is easy to implement and achieves good results. To maintain the dc voltage across capacitor constant and reduce inverter losses, a proportional integral voltage controller is used. The simulation of global system control and power circuits is performed using Matlab-Simulink and SimPowerSystem toolbox. The results obtained in transient and steady states under various operating conditions show the effectiveness of the proposed shunt active filter based on fuzzy current controller compared to the conventional scheme.

Present State Analysis of Customers' Effect in Power Distribution System by Momentary Voltage Variation (배전계통의 순시전압변동에 의한 수용가측 영향의 현황 분석)

  • 김재철;윤상윤;오정환;임성정
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.4
    • /
    • pp.37-46
    • /
    • 1998
  • This paper analyzes the present state of customers' effect in distribution system by momentary voltage variation. Customers are becoming increasingly concerned about the quality of electric power. Most of all, the voltage magnitude quality is very important because it can have a direct effect on customers. Especially, according to the development of automatic process, momentary voltage variations result in the shutdown of sensitive loads such as electronic equipment, computer and magnetic contactor, and so on. To analyze the shutdown rate of customers' equipments by the momentary voltage variation, we present the CVEMA curve and he cumulative CVEA curve of each load type through the experiment for the customers' sensitive equipments. Also, we have surveyed customers' opinion by the questionnaire as "Survey of Power Quality" an then the results are reported.

  • PDF

Analysis on Voltage Sag in Low Voltage DC Distribution System according to the Number of Poles (극 수에 따른 저압직류 배전계통의 순시전압강하 분석)

  • Noh, Chul-Ho;Kim, Doo-Ung;Gwon, Gi-Hyeon;Oh, Yun-Sik;Han, Jun;Kim, Chul-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.11
    • /
    • pp.66-73
    • /
    • 2015
  • AC-based power systems, having the advantages that voltage transformation and long distance transmission are easy, have been constructed since the last 19th century. However, DC-based power system is paid attention these days because of the development of power electronic devices as well as the increase of digital loads and distributed generation. For instance, the transmission systems using High Voltage DC (HVDC) are commercially operated in the world and the researches on distribution system using Low Voltage DC (LVDC) are gradually increased. This paper analyzes voltage sag, resulted from faults, in LVDC distribution system according to the number of poles. Modeling and simulation with various conditions are conducted by using ElectroMagnetic Transients Program (EMTP). Moreover, some countermeasures to reduce voltage sag in LVDC distribution system are suggested briefly.

Low-Complexity VFF-RLS Algorithm Using Normalization Technique (정규화 기법을 이용한 낮은 연산량의 가변 망각 인자 RLS 기법)

  • Lee, Seok-Jin;Lim, Jun-Seok;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.18-23
    • /
    • 2010
  • The RLS (Recursive Least Squares) method is a broadly used adaptive algorithm for signal processing in electronic engineering. The RLS algorithm shows a good performance and a fast adaptation within a stationary environment, but it shows a Poor performance within a non-stationary environment because the method has a fixed forgetting factor. In order to enhance 'tracking' performances, BLS methods with an adaptive forgetting factor had been developed. This method shows a good tracking performance, however, it suffers from heavy computational loads. Therefore, we propose a modified AFF-RLS which has relatively low complexity m this paper.

Dynamic Characteristic Analysis Procedure of Helicopter-mounted Electronic Equipment (헬기 탑재용 전자장비의 동특성 분석 절차)

  • Lee, Jong-Hak;Kwon, Byunghyun;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.759-769
    • /
    • 2013
  • Electronic equipment has been applied to virtually every area associated with commercial, industrial, and military applications. Specifically, electronics have been incorporated into avionics components installed in aircraft. This equipment is exposed to dynamic loads such as vibration, shock, and acceleration. Especially, avionics components installed in a helicopter are subjected to simultaneous sine and random base excitations. These are denoted as sine on random vibrations according to MIL-STD-810F, Method 514.5. In the past, isolators have been applied to avionics components to reduce vibration and shock. However, an isolator applied to an avionics component installed in a helicopter can amplify the vibration magnitude, and damage the chassis, circuit card assembly, and the isolator itself via resonance at low-frequency sinusoidal vibrations. The objective of this study is to investigate the dynamic characteristics of an avionics component installed in a helicopter and the structural dynamic modification of its tray plate without an isolator using both a finite element analysis and experiments. The structure is optimized by dynamic loads that are selected by comparing the vibration, shock, and acceleration loads using vibration and shock response spectra. A finite element model(FEM) was constructed using a simplified geometry and valid element types that reflect the dynamic characteristics. The FEM was verified by an experimental modal analysis. Design parameters were extracted and selected to modify the structural dynamics using topology optimization, and design of experiments(DOE). A prototype of a modified model was constructed and its feasibility was evaluated using an FEM and a performance test.

Single-phase Control Algorithm of 4-Leg type PCS for Micro-grid System (마이크로그리드용 4-Leg 방식 PCS의 각상 개별제어 알고리즘에 관한 연구)

  • Kim, Seung-Ho;Choi, Sung-Sik;Kim, Seung-Jong;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.817-825
    • /
    • 2017
  • The AC-common bus microgrid system can overcome several weaknesses of the DC microgrid system by interconnecting the DC/AC inverters used for renewable energy with an AC network. Nevertheless, the unbalanced loads inherent in the electric power systems of island and small communities can deteriorate the performance of the AC microgrid system. This is because of the limited voltage regulation capability and mixed power flow in the voltage source inverter. In order to overcome the unbalanced load condition, this paper proposes a voltage and current control algorithm for the 4-leg inverter based on the single phase d-q control method, as well as the modeling of the voltage controller using Matlab/Simulink S/W. From the S/W simulation and experiment of the 250KW proto-type inverter, it is confirmed that the proposed algorithm is a useful tool for the design and operation of the AC microgrid system.

A 10b 100MS/s 0.13um CMOS D/A Converter Based on A Segmented Local Matching Technique (세그먼트 부분 정합 기법 기반의 10비트 100MS/s 0.13um CMOS D/A 변환기 설계)

  • Hwang, Tae-Ho;Kim, Cha-Dong;Choi, Hee-Cheol;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.4
    • /
    • pp.62-68
    • /
    • 2010
  • This work proposes a 10b 100MS/s DAC based on a segmented local matching technique primarily for small chip area. The proposed DAC employing a segmented current-steering structure shows the required high linearity even with the small number of devices and demonstrates a fast settling behavior at resistive loads. The proposed segmented local matching technique reduces the number of current cells to be matched and the size of MOS transistors while a double-cascode topology of current cells achieves a high output impedance even with minimum sized devices. The prototype DAC implemented in a 0.13um CMOS technology occupies a die area of $0.13mm^2$ and drives a $50{\Omega}$ load resistor with a full-scale single output voltage of $1.0V_{p-p}$ at a 3.3V power supply. The measured DNL and INL are within 0.73LSB and 0.76LSB, respectively. The maximum measured SFDR is 58.6dB at a 100MS/s conversion rate.

A novel energy-efficient bridgeless boost AC to DC converter (효율을 고려한 새로운 AC/DC 컨버터)

  • Yoon, Kyoung-Kuk;Kim, Seong-Hwan;Kim, Deok-Ki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.223-227
    • /
    • 2016
  • Power supplies make the load compatible with its power source. DC power supplies are extensively used with most electrical and electronic appliances such as computers, television, and audio sets. The presence of non-linear loads results in a low power factor and higher harmonics in the power system. Several techniques for power-factor correction and harmonic reduction have been reported in the literature. This paper proposes a bridgeless boost converter that improves the power factor and reduces the harmonic content in input line currents as compared to full-bridge rectifiers. This bridgeless boost converter eliminates the need of a line-voltage bridge rectifier in conventional boost converter and thereby reduces conduction losses. The effectiveness of the proposed scheme is verified by computer simulations by using the PSIM software.

Three-phase Four-wire Series Active Power Filter Control Strategy for The Compensation of Harmonics and Reactive Power Based-on Direct Compensating Voltage Extraction Method (직접 보상전압 추출기법을 이용하여 고조파전류와 무효전력을 보상하는 3상 4선식 직렬 형 능동전력필터의 제어법)

  • 김진선;김영석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.213-221
    • /
    • 2004
  • In recent years, since more and more diode rectifiers with smoothing dc capacitor are used in electronic equipments, household appliances and ac drives, harmonics generated by these loads have become a major issue. In addition, 3-phase 4-wire system is widely employed in distributing electric energy to several office building and manufacturing plants. This systems show excessive currents in the neutral. These neutral currents are fundamentally third harmonic, and their presence is tied to wiring failure, elevating of neutral potentials, transformer overheating, etc. In response to the concerns, this paper proposes a series active power filter scheme based on direct compensating voltage extraction method and the advantage of this control algorithm is direct extraction of compensation voltage reference without multiplying gain. Therefore, the calculation of the compensation voltage reference will becom much simpler than other control algorithm. To verify the effectiveness of the proposed algorithm, a prototype active power filter is built and some experiments are carried out.

Standard Wire Harness Designs in Commercial Vehicles Based on Control Types and Functional Blocks (동작 방식과 기능별 회로 분류에 기반한 상용차 배선 회로 표준화 방안)

  • Lim, Hansang;Bae, Seung-Deuk;Jung, Do Hwan;Jeong, Hyun Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.96-105
    • /
    • 2013
  • This paper presents a standardization method for designing wire harness systems, based on the control types and functional blocks, for use in commercial vehicles. With a rapid increase in the installation of systems with added new features, it is very important to develop a reliable wire harness design in a short time by standardizing wire harness designs and reusing the standard design. Because the function of a system, particularly, for commercial vehicles, varies significantly on the basis of the requirements, regulations, and options, it is not effective to establish one standard design for one system. In addition, a system with the same function may differ in terms of the input conditions and output loads on the basis of the installed vehicle types, and it is not practical to standardize a harness design targeting an entire system. In this study, the wire harness designs of a system were classified into six categories based on the control types of the system: switch driven, control of a switch, control of an electronic control unit, unit driven, control of a unit, and connector operation. Then, a wire harness design of each system was divided into three blocks according to their functions: the control, drive, and monitoring blocks. The standard wire harness designs were made for each functional block of each control type. The advantage of this proposed method is that an effective and practical design can be obtained, which covers the diversities in the same system for different grades of commercial vehicles with a reduction in the number of wire harness supplements.