• Title/Summary/Keyword: Electronic Learning

Search Result 1,359, Processing Time 0.042 seconds

Proposal of Electronic Engineering Exploration Learning Operation Using Computing Thinking Ability

  • LEE, Seung-Woo;LEE, Sangwon
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.110-117
    • /
    • 2021
  • The purpose of the study is to develop effective teaching methods to strengthen the major learning capabilities of electronic engineering learners through inquiry learning using computing thinking ability. To this end, first, in the electronic engineering curriculum, we performed teaching-learning through an inquiry and learning model related to mathematics, probability, and statistics under the theme of various majors in electronic engineering, focusing on understanding computing thinking skills. Second, an efficient electronic engineering subject inquiry class operation using computing thinking ability was conducted, and electronic engineering-linked education contents based on the components of computer thinking were presented. Third, by conducting a case study on inquiry-style teaching using computing thinking skills in the electronic engineering curriculum, we identified the validity of the teaching method to strengthen major competency. In order to prepare for the 4th Industrial Revolution, by implementing mathematics, probability, statistics-related linkage, and convergence education to foster convergent talent, we tried to present effective electronic engineering major competency enhancement measures and cope with innovative technological changes.

Performance Improvement of Backpropagation Algorithm by Automatic Tuning of Learning Rate using Fuzzy Logic System

  • Jung, Kyung-Kwon;Lim, Joong-Kyu;Chung, Sung-Boo;Eom, Ki-Hwan
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.3
    • /
    • pp.157-162
    • /
    • 2003
  • We propose a learning method for improving the performance of the backpropagation algorithm. The proposed method is using a fuzzy logic system for automatic tuning of the learning rate of each weight. Instead of choosing a fixed learning rate, the fuzzy logic system is used to dynamically adjust the learning rate. The inputs of fuzzy logic system are delta and delta bar, and the output of fuzzy logic system is the learning rate. In order to verify the effectiveness of the proposed method, we performed simulations on the XOR problem, character classification, and function approximation. The results show that the proposed method considerably improves the performance compared to the general backpropagation, the backpropagation with momentum, and the Jacobs'delta-bar-delta algorithm.

Discrete-time learning control for robotic manipulators

  • Suzuki, Tatsuya;Yasue, Masanori;Okuma, Shigeru;Uchikawa, Yoshiki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.1069-1074
    • /
    • 1989
  • A discrete-time learning control for robotic manipulators is studied using its pulse transfer function. Firstly, discrete-time learning stability condition which is applicable to single-input two-outputs systems is derived. Secondly, stability of learning algorithm with position signal is studied. In this case, when sampling period is small, the algorithm is not stable because of an unstable zero of the system. Thirdly, stability of algorithm with position and velocity signals is studied. In this case, we can stabilize the learning control system which is unstable in learning with only position signal. Finally, simulation results on the trajectory control of robotic manipulators using the discrete-time learning control are shown. This simulation results agree well with the analytical ones.

  • PDF

Proposing Micro-Learning in Saudi Universities

  • Almalki, Mohammad Eidah Messfer
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.13-16
    • /
    • 2022
  • This paper proposes using micro-learning at Saudi universities. It commences with an account of the concept of micro-learning and the difference between micro-learning and electronic learning. Then it touches on the significance, principles, and examples of micro-learning, followed by some micro-learning applications and pitfalls. The paper closes with a proposal for using this learning mode at Saudi universities.

A Study on Intelligent Contents for Virtual University

  • Sik, Hong-You;Son, Jeong-Kwang;Park, Chong-Kug
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.422-425
    • /
    • 2004
  • Many believe that electronic distance teaming education transform higher education, saving money and improving learning qualify So, the open University, which teaches around 280,000 students at a distance, is examining the adaption of its distance teaching methods for the internet. But, there are only one type of distance learning education of one way direction. To understand all of a student which selected some of e teaming course, teacher must check that how many student to understand and what is the difficult problems. Without checking this condition, It will be a very difficult and boring distance learning course. In this paper, we introduce of intelligent learning contents of full duplex direction that teach understanding student and not understanding student. The computer simulation results confirms that full duplex e learning system has been proven to be much more efficient than one way direction which not considering about understanding problems.

  • PDF

A Survey on Deep Convolutional Neural Networks for Image Steganography and Steganalysis

  • Hussain, Israr;Zeng, Jishen;Qin, Xinhong;Tan, Shunquan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1228-1248
    • /
    • 2020
  • Steganalysis & steganography have witnessed immense progress over the past few years by the advancement of deep convolutional neural networks (DCNN). In this paper, we analyzed current research states from the latest image steganography and steganalysis frameworks based on deep learning. Our objective is to provide for future researchers the work being done on deep learning-based image steganography & steganalysis and highlights the strengths and weakness of existing up-to-date techniques. The result of this study opens new approaches for upcoming research and may serve as source of hypothesis for further significant research on deep learning-based image steganography and steganalysis. Finally, technical challenges of current methods and several promising directions on deep learning steganography and steganalysis are suggested to illustrate how these challenges can be transferred into prolific future research avenues.

Position Control of Linear Synchronous Motor by Dual Learning (이중 학습에 의한 선형동기모터의 위치제어)

  • Park, Jung-Il;Suh, Sung-Ho;Ulugbek, Umirov
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.79-86
    • /
    • 2012
  • This paper proposes PID and RIC (Robust Internal-loop Compensator) based motion controller using dual learning algorithm for position control of linear synchronous motor respectively. Its gains are auto-tuned by using two learning algorithms, reinforcement learning and neural network. The feedback controller gains are tuned by reinforcement learning, and then the feedforward controller gains are tuned by neural network. Experiments prove the validity of dual learning algorithm. The RIC controller has better performance than does the PID-feedforward controller in reducing tracking error and disturbance rejection. Neural network shows its ability to decrease tracking error and to reject disturbance in the stop range of the target position and home.

A New Learning Algorithm for Neuro-Fuzzy Modeling Using Self-Constructed Clustering

  • Kim, Sung-Suk;Kwak, Keun-Chang;Kim, Sung-Soo;Ryu, Jeong-Woong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1254-1259
    • /
    • 2005
  • In this paper, we proposed a learning algorithm for the neuro-fuzzy modeling using a learning rule to adapt clustering. The proposed algorithm includes the data partition, assigning the rule into the process of partition, and optimizing the parameters using predetermined threshold value in self-constructing algorithm. In order to improve the clustering, the learning method of neuro-fuzzy model is extended and the learning scheme has been modified such that the learning of overall model is extended based on the error-derivative learning. The effect of the proposed method is presented using simulation compare with previous ones.

  • PDF

Using machine learning for anomaly detection on a system-on-chip under gamma radiation

  • Eduardo Weber Wachter ;Server Kasap ;Sefki Kolozali ;Xiaojun Zhai ;Shoaib Ehsan;Klaus D. McDonald-Maier
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.3985-3995
    • /
    • 2022
  • The emergence of new nanoscale technologies has imposed significant challenges to designing reliable electronic systems in radiation environments. A few types of radiation like Total Ionizing Dose (TID) can cause permanent damages on such nanoscale electronic devices, and current state-of-the-art technologies to tackle TID make use of expensive radiation-hardened devices. This paper focuses on a novel and different approach: using machine learning algorithms on consumer electronic level Field Programmable Gate Arrays (FPGAs) to tackle TID effects and monitor them to replace before they stop working. This condition has a research challenge to anticipate when the board results in a total failure due to TID effects. We observed internal measurements of FPGA boards under gamma radiation and used three different anomaly detection machine learning (ML) algorithms to detect anomalies in the sensor measurements in a gamma-radiated environment. The statistical results show a highly significant relationship between the gamma radiation exposure levels and the board measurements. Moreover, our anomaly detection results have shown that a One-Class SVM with Radial Basis Function Kernel has an average recall score of 0.95. Also, all anomalies can be detected before the boards are entirely inoperative, i.e. voltages drop to zero and confirmed with a sanity check.

Search for optimal time delays in universal learning network

  • Han, Min;Hirasawa, Kotaro;Ohbayashi, Masanao;Fujita, Hirofumi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.95-98
    • /
    • 1996
  • Universal Learning Network(U.L.N.), which can model and control the large scale complicated systems naturally, consists of nonlinearly operated nodes and multi-branches that may have arbitrary time delays including zero or minus ones. Therefore, U.L.N. can be applied to many kinds of systems which are difficult to be expressed by ordinary first order difference equations with one sampling time delay. It has been already reported that learning algorithm of parameter variables in U.L.N. by forward and backward propagation is useful for modeling, managing and controlling of the large scale complicated systems such as industrial plants, economic, social and life phenomena. But, in the previous learning algorithm of U.L.N., time delays between the nodes were fixed, in other words, criterion function of U.L.N. was improved by adjusting only parameter variables. In this paper, a new learning algorithm is proposed, where not only parameter variables but also time delays between the nodes can be adjusted. Because time delays are integral numbers, adjustment of time delays can be carried out by a kind of random search procedure which executes intensified and diversified search in a single framework.

  • PDF