• Title/Summary/Keyword: Electronic Information Room

Search Result 156, Processing Time 0.033 seconds

CMOS Interconnect Electronics Architecture for Reliable and Scalable Quantum Computer (확장성 신뢰성 갖춘 양자 컴퓨터를 위한 CMOS 기반 제어 및 센싱 회로 기술)

  • Jusung Kim;Junghwan Han;Jae-Won Nam;Kunhee Cho
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.12-18
    • /
    • 2023
  • The current circuit technology that individually connects each qubit to a control circuit at room temperature has limitations in achieving scalability and reliability of a quantum computer. With the advent of cryogenic CMOS interconnect electronics, it is expected to dramatically improve the interconnect complexity, system reliability and size, and price. In this paper, we introduce the CMOS integrated sensing and control technology platform overcoming the problems caused by the fragile and sensitive characteristics of qubit.

Design and Implementation of Hospital Room Management System Based on IoT CareBots (IoT 케어봇 기반 병실 관리 시스템의 설계 및 구현)

  • Jo, Sang-Young;Jeong, Jin-Woo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.4
    • /
    • pp.370-378
    • /
    • 2018
  • Recent advances in network infrastructures, sensors, and IoT devices have accelerated the research and development of monitoring and interaction technologies designed for people, buildings, and environments. In particular, there has been an increasing demand for monitoring technologies for vulnerable people such as the infirm, disabled, and children. In this paper, we propose an efficient hospital room management system based on IoT care robots. The status of hospital rooms can be monitored and controlled more efficiently and intuitively by utilizing IoT devices and a cloud platform. We demonstrated the feasibility of the proposed system through the implementation of a prototype based on ARTIK IoT devices and the ARTIK Cloud platform. We found that the proposed system requires approximately 600 ms and 130 ms to collect sensor data and respond to alerts, respectively, which demonstrates it can operate in real-time.

Properties of Silicon for Photoluminescence

  • Baek, Dohyun
    • Applied Science and Convergence Technology
    • /
    • v.23 no.3
    • /
    • pp.113-127
    • /
    • 2014
  • For more than five decades, silicon has dominated the semiconductor industry that supports memory devices, ICs, photovoltaic devices, etc. Photoluminescence (PL) is an attractive silicon characterization technique because it is contactless and provides information on bulk impurities, defects, surface states, optical properties, and doping concentration. It can provide high resolution spectra, generally with the sample at low temperature and room-temperature spectra. The photoluminescence properties of silicon at low temperature are reviewed and discussed in this study. In this paper, silicon bulk PL spectra are shown in multiple peak positions at low temperature. They correspond with various impurities such as In, Al, and Be, phonon interactions, for example, acoustical phonons and optical phonons, different exciton binding energies for boron and phosphorus, dislocation related PL emission peak lines, and oxygen related thermal donor PL emissions.

Fabrication and characterization of silicon-based microsensors for detecting offensive $CH_3SH\;and\; (CH_3)_3N$ gases

  • Lee, Kyu-Chung;Hur, Chang-Wu
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.1
    • /
    • pp.38-42
    • /
    • 2008
  • Highly sensitive and mechanically stable gas sensors have been fabricated using the microfabrication and micromachining techniques. The sensing materials used to detect the offensive $CH_3SH$ and $(CH_3)_3N$ gases are 1 wt% Pd-doped $SnO_2$ and 6 wt% $Al_2O_3$-doped ZnO, respectively. The optimum operating temperatures of the devices are $250^{\circ}C$ and $350^{\circ}C$ for $CH_3SH$ and $(CH_3)_3N$, respectively and the corresponding heater power is, respectively, about 55mW and 85mW. Excellent thermal insulation is achieved by the use of a double-layer membrane: i.e. $0.2{\mu}m$-thick silicon nitride and $1.4{\mu}m$-thick phosphosilicate glass. The sensors are mechanically stable enough to endure the heat cycles between room temperature and $350^{\circ}C$, at least for 30 days.

A Study on the Cooperation Model for Virtual Reference Services in Public Libraries (공공도서관 가상참고봉사 협력모형개발을 위한 연구)

  • Cha, Mi-Kyeong;Kim, Soo-Jeong
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.40 no.4
    • /
    • pp.367-383
    • /
    • 2006
  • The purpose of this study is to develop a practical model for enhancing cooperative virtual reference services of public libraries in the nation. The research methods include an examination of model cases from Europe and the V.S. and also an electronic questionnaire survey of 375 public librarians (73% response rate). The study results suggest the need for 'a collaborative virtual reference room' which consists of the collaborative reference database, virtual reference desk, guidance and instruction designed by age groups and/or subjects.

Uncooled Metallic Thin-film Thermopile Infrared Detector (비냉각 금속 박막형 열전퇴 적외선 검지기)

  • Oh, Kwang-Sik;Cho, Hyun-Duk;Kim, Jin-Sup;Lee, Yong-Hyun;Lee, Jong-Hyun;Lee, Jung-Hee;Park, Se-Il
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.2
    • /
    • pp.5-12
    • /
    • 2000
  • Uncooled metallic thin-film thermopile infrared detectors have been fabricated, and the figures of merit for the detectors were examined. The hot junctions of a thermopile were prepared on a $Si_{3}N_{4}/SiO_{2}/Si_{3}N_{4}$-membrane which acts as a thermal isolation layer, the cold junctions on the membrane supported with the silicon rim which functions as a heat sink, and Au-black was used as an infrared absorber. Infrared absorbance of Au-black, which strongly depends on the chamber pressure during Au-evaporation and its mass per area, was found to be about 90 % in the wavelength range from 3${\mu}{\textrm}{m}$ to 14${\mu}{\textrm}{m}$. Voltage responsivity, noise equivalent power, and specific detectivity of Bi-Sb thermopile infrared detector at 5 Hz-chopping frequency were about 10.5V/W, 2.3 nW/Hz$^{1/2}$, 및 $1.9\times10^{7}$ cm.Hz$^{1/2}$/w at room temperature in air, respectively.

  • PDF

Electrical Properties of CuPC FET with Varying Substrate Temperature (CuPC PET의 기판온도에 따른 전기적 특성 연구)

  • Lee, Ho-Shik;Cheon, Min-Woo;Park, Yong-Pil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.1
    • /
    • pp.110-114
    • /
    • 2009
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with different substrate temperature. The CuPc FET device was made a top-contact type and the substrate temperature was room temperature and $150^{\circ}C$. The CuPc thickness was 40nm, and the channel length was $50{\mu}m$, channel width was 3mm. We observed a typical current-voltage (I-V) characteristics in CuPc FET.

Fabrication and Electrical Properties of CuPc FET with Different Substrate Temperature (CuPc FET의 기판온도에 따른 제작 및 전기적 특성 연구)

  • Lee, Ho-Shik;Yang, Seong-Ho;Park, Yong-Pil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.548-551
    • /
    • 2007
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with different substrate temperature. The CuPc FET device was made a top-contact type and the substrate temperature was room temperature and $150^{\circ}C$. The CuPc thickness was 40nm, and the channel length was $50{\mu}m$, channel width was 3mm. We observed a typical current-voltage (I-V) characteristics in CuPc FET.

  • PDF

Electrical Properties of CuPc-OFET with Metal Electrode (금속 전극에 따른 CuPc-OFET 의 전기적 특성)

  • Lee, Ho-Shik;Park, Yong-Pil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.751-753
    • /
    • 2007
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with different metal electrode. The CuPc FET device was made a top-contact type and the substrate temperature was room temperature. The source and drain electrodes were used an Au and Al materials. The CuPc thickness was 40nm. and the channel length was $50{\mu}m$, channel width was 3mm. We observed a typical current-voltage (I-V) characteristics in CuPc FET with different electrode materials.

  • PDF

Investigation of Meat Quality Characteristics using by Spectroscopic Methods in Visible Region (NIR을 이용하여 시간 변화에 따른 소 등심육의 부위별 특성 조사)

  • Maeng, Gab-Joo;Hwang, Dae-Seok;Lee, Young-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.268-270
    • /
    • 2007
  • We investigated characteristics of meat quality using by spectroscopic methods in visible region. Characteristics of beef muscle quality was measured by using spectrum analysis. We take the 3 samples of meat, and each sample has 3 measuring point. Also each measured samples has alternate thawing time(the state of frozen meat, thawing 20 minute and thawing 40 minute in the room temperature). As a results of experiments, measured intensity has changed by distributions of Myoglobin in meat muscles. And we can distinction the and characteristics of meat quality by distributions of lean meat and fat.

  • PDF