• Title/Summary/Keyword: Electronic Device

Search Result 4,560, Processing Time 0.029 seconds

A Small Scaling Lateral Trench IGBT with Improved Electrical Characteristics for Smart Power IC (스마트 파워 IC를 위한 향상된 전기특성의 소규모 횡형 트랜치 IGBT)

  • 문승현;강이구;성만영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.267-270
    • /
    • 2001
  • A new small scaling Lateral Trench Insulated Gate Bipolar Transistor (SSLTIGBT) was proposed to improve the characteristics of the device. The entire electrode of the LTIGBT was replaced with a trench-type electrode. The LTIGBT was designed so that the width of device was no more than 10$\mu\textrm{m}$. The latch-up current densities were improved by 4.5 and 7.6 times, respectively, compared to those of the same sifted conventional LTIGBT and the conventional LTIGBT which has the width of 17$\mu\textrm{m}$. The enhanced latch-up capability of the SSLTIGBT was obtained due to the fact that the hole current in the device reaches the cathode via the p+ cathode layer underneath the n+ cathode layer, directly. The forward blocking voltage of the SSLTIGBT was 125 V. At the same size, those of the conventional LTIGBT and the conventional LTIGBT with the width of 17$\mu\textrm{m}$ were 65 V and 105 V, respectively. Because the proposed device was constructed of trench-type electrodes, the electric field in the device were crowded to trench oxide. Thus, the punch through breakdown of LTEIGBT occurred late.

  • PDF

A Lateral Trench Electrode Power MOSFET with Superior Electrical Characteristics for Smart Power IC Systems (스마트 파워 IC를 위한 트렌치 파워 MOSFET의 전기적 특성에 관한 연구)

  • 성만영;김대종;강이구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.27-30
    • /
    • 2004
  • In this paper, a new small size Lateral Trench Electrode Power MOSFET is proposed. This new structure, called "LTEMOSFET"(Lateral Trench Electrode Power MOSFET), is based on the conventional MOSFET. The entire electrode of LTEMOSFET is placed in trench oxide. The forward blocking voltage of the proposed LTEMOSFET is improved by 1.6 times with that of the conventional MOSFET. The forward blocking voltage of LTEMOSFET is 250V. At the same size, a increase of the forward blocking voltage of about 1.6 times relative to the conventional MOSFET is observed by using TMA-MEDICI which is used for analyzing device characteristics. Because the electrodes of the proposed device are formed in trench oxide, the electric field in the device are crowded to trench oxide. We observed that the characteristics of the proposed device was improved by using TMA-MEDICI and that the fabrication of the proposed device is possible by using TMA-TSUPREM4.

Deposition of Piezoelectric PZT(53/47) Film by Metalorganic Decomposition for Micro electro mechanical Device (Microelectromechnical system 소자 제작을 위한 유기금속분해법에 의한 압전성 PZT(53/47)박막의 증착)

  • 윤영수;정형진;신영화
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.6
    • /
    • pp.458-464
    • /
    • 1998
  • This paper gives characterization of substrate and PZT(53/47) thin film deposited by metalorganic decomposition, which is concerned in deposition process and device fabrication process, to fabricate micro electro mechanical system (MEMS) device with piezoelectric material. The PZT thin films deposited by MOD at 700^{\circ}C$ for 30 minutes had a polycrystallinity, that is, no substrate dependence, while different interface were developed depending on the bottom electrodes. Such a structural variation could influence on not only the properties of the PZT film but also etching process for fabricating MEMS devices. Therefore the electrode structure is a very important factor in the deposition of the PZT film during etching process by HF acid for MEMS device with piezoelectric material. Piezoelectric coefficients of the PZT films on the different substrates were 40 and 80 pm/V at an applied voltage of 4V. Based in these results, it was possible for deposition of the PZT film by MOD to apply MEMS device fabrication process based on piezoelectricity after selection of proper bottom electrode.

  • PDF

A Study of The Electrical Characteristics of Small Fabricated LTEIGBTs for The Smart Power ICs (스마트 파워 IC에의 활용을 위한 소형 LTEIGBT의 제작과 전기적인 특성에 관한 연구)

  • 오대석;김대원;김대종;염민수;강이구;성만영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.338-341
    • /
    • 2002
  • A new small size Lateral Trench Electrode Insulated Gate Bipolar Transistor (LTEIGBT) is proposed and fabricated to improve the characteristics of device. The entire electrode of LTEIGBT is placed to trench type electrode. The LTEIGBT is designed so that the width of device is 19$\mu\textrm{m}$. The latch-up current density of the proposed LTEIGBT is improved by 10 and 2 times with those of the conventional LIGET and LTIGBT The forward blocking voltage of the LTEIGBT is 130V. At the same size, those of conventional LIGBT and LTIGBT are 60V and 100V, respectively. Because that the electrodes of the proposed device is formed of trench type, the electric field in the device are crowded to trench oxide. We fabricated He proposed LTEIGBT after the device and process simulation was finished. When the gate voltage is applied 12V, the forward conduction currents of the proposed LTEIGBT and the conventional LIGBT are 80mA and 70mA, respectively, at the same breakdown voltage of 150V,

  • PDF

Effects of PEDOT:PSS Buffer Layer and Cathode in a Device Structure of $ITO/PEDOT:PSS/TPD/Alq_3/Cathode$ ($ITO/PEDOT:PSS/TPD/Alq_3/Cathode$ 소자 구조에서 PEDOT:PSS 층과 음전극의 영향)

  • Kim, S.K.;Chung, D.H.;Lee, H.D.;Oh, H.S.;Cho, H.N.;Lee, W.J.;Kim, T.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1003-1006
    • /
    • 2003
  • We have investigated the effect of hole-injection buffer layer and cathodes in organic light-emitting diodes u sing poly (3,4-ethylenedioxythiophene) : poly (stylenesulfonate) (PEDOT: PSS) in a device structure of $ITO/PEDOT:PSS/TPD/Alq_3/Cathode$. Polymer PEDOT:PSS buffer layer was made using spin casting method. Current-voltage, luminance-voltage characteristics and efficiency of device were measured at room temperature with a variation of cathode materials. The device with LiF/Al cathode shows an improvement of external quantum efficiency approximately by a factor of ten compared to that of Al cathode only device. Our observation shows that the energy barrier-height in cathode side is important in improving the efficiency of the organic light-emitting diodes.

  • PDF

The Electro-optical Properties of Multilayer EL Devices with P3HT as Emitting layer (P3HT를 이용한 다층막 전계발광 소자의 전기-광학적 특성)

  • Kim, Dae-Jung;Kim, Ju-Seung;Kim, Jeong-Ho;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1018-1021
    • /
    • 2003
  • We have synthesized poly(3-hexylthiophene) and studied the optical properties of P3HT for applying to the red emitting materials of organic electroluminescent device. Usually, an organic EL device is composed of single layer like anode/emitting layer/cathode, but additional layer such as hole transport, electron transport and buffer layer is deposited to improve device efficiency. In this study, Multilayer EL devices were fabricated using tris(8-hydroxyquinolinate) aluminum($Alq_3$) as electron transport material, (N,N'-diphenyl-N,,N'(3-methylphenyl)-1,1'-biphenyl-4,4'diamine))(TPD) as hole transport/electron blocking materials and LiF as buffer layer. That is, a device structure of ITO/blending layer(TPD+P3HT)/$Alq_3$/LiF/Al was employed. In the Multilayer device, the luminance of $10{\mu}W/cm^2$ obtained at 10V. And, we present the experimental evidence of the enhancement of the Foster energy transfer interaction in emitting layer.

  • PDF

Energy Transfer Phenomenon in Organic EL Devices Having Single Emitting Layer (단층형 유기 EL 소자의 에너지 전달 특성에 관한 연구)

  • Kim, Ju-Seung;Seo, Bu-Wan;Gu, Hal-Bon;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.331-334
    • /
    • 2000
  • The organic electroluminescent(EL) device has gathered much interest because of its large potential in materials and simple device fabrication. We fabricated EL devices which have a blended single emitting layer containg poly(Nvinylcarbazole)[PVK] and poly(3-dodecylthiophene)[P3DoDT]. The molar ratio between P3DoDT and PVK changed with 1:0, 2:1 and 1:1. To improve the external quantum efficiency of EL devices, we applied insulating layer, LiF layer between polymer emitting layer and AI electrode. All of the devices emit orange-red light and it's can be explained that the energy transfer occurs from PVK to P3DoDT. Within the molar ratio 1:0, 2:1 and 1:1, the energy transfer was not saturated, which results in the not appearance of PVK emission in the blue region. In the voltage-current and voltage-light power characteristics of devices applied LiF layer, current and light power drastically increased with increasing with applied voltage. In the consequence of the result, the light power of the device have a molar ratio 1:1 with LiF layer was about 10 times larger than that of the device without PVK at 6V.

  • PDF

A Lateral Trench Electrode Power MOSFET with Improved Blocking Characteristics (개선된 항복 특성을 갖는 수평형 트렌치 전극 파워 MOSFET)

  • Kim, Dae-Jong;Kim, Sang-Sig;Sung, Man-Young;Kang, Ey-Goo;Rhie, Dong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.323-326
    • /
    • 2003
  • In this paper, a new small size Lateral Trench Electrode Power MOSFET is proposed. This new structure, called "LTEMOSFET"(Lateral Trench Electrode Power MOSFET), is based on the conventional MOSFET. The entire electrode of LTEMOSFET is placed in trench oxide. The forward blocking voltage of the proposed LTEMOSFET is improved by 1.6 times with that of the conventional MOSFET. The forward blocking voltage of LTEMOSFET is 250V. At the same size, a increase of the forward blocking voltage of about 1.6 times relative to the conventional MOSFET is observed by using TMA-MEDICI which is used for analyzing device characteristics. Because the electrodes of the proposed device are formed in trench oxide, the electric field in the device are crowded to trench oxide. We observed that the characteristics of the proposed device was improved by using TMA-MEDICI and that the fabrication of the proposed device is possible by using TMA-TSUPREM4.

  • PDF

Optical Modulation Characteristics of Red Organic Light Emitting Diodes for the Application on the Electro-optical Conversion Device (전기-광 변환소자 응용을 위한 적색 유기 EL 소자의 광변조 특성)

  • Kim, Ju-Seung;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.6
    • /
    • pp.576-581
    • /
    • 2005
  • We fabricated red organic light emitting diodes(OLEDs) utilizing tis(8-hydroxyquinoline) aluminum $(Alq_3)$ doped with $5\%$ of (4-(dicyanomethylene)-2-i-propyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran) (DCJTI) and investigated the driving and modulation characteristics for applying to the electro-optical conversion device. To improve the driving characteristics of red OLEDs, 3 V of offset voltage, which is equal to the turn on voltage, Is applied to the device. Offset voltage enhanced the optical EL output and reduced the rise time of EL waveforms of red OLEDs, and hence the cutoff frequency is increased with increasing applied voltage. The optical pulse of 100 MHz has been obtained from red OLEDs. Therefore, we confirmed that the red OLEDs can be applied to the fields of optical communication as an electro-optical conversion device.

Electrical Properties of Organic Thin Film for Power Device (전력 소자용 유기박막의 전기적 특성)

  • Song, Jin-Won;Choi, Yong-Sung;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.20-22
    • /
    • 2006
  • Monolayers of lipids on a water surface have attracted much interest as models of biological membranes, but also as precursors of multilayer systems promising many technical applications. Until now, many methodologies have been developed in order to gain a better understanding of the relationship between the structure and function of the monolayers. Maxwell displacement current (MDC) measurement has been employed to study the dielectric property of Langmuir-films. MDC flowing across monolayers is analyzed using a rod-like molecular model. A linear relationship between the monolayer compression speed and the molecular area Am. Compression speed was about 30, 40, 50mm/min. Langmuir-Blodgett(LB)layers of Arachidic acid deposited by LB method were deposited onto slide glass as Y-type film. The structure of manufactured device is Au/Arachidic acid/Al, the number of accumulated layers are 9~21. Also, we then examined of the Metal-Insulator-Metal(MIM) device by means of I-V. The I-V characteristics of the device are measured from -3 to +3[V]. The insulation property of a thin film is better as the distance between electrodes is larger.

  • PDF