• Title/Summary/Keyword: Electronic Conduction

Search Result 574, Processing Time 0.035 seconds

Review of Electrical Characterization of Ceramic Thin Films for the Next Generation Semiconductor Devices (차세대 반도체 소자용 세라믹 박막의 전기적 분석 방법 리뷰)

  • Lee, Donghyun;Yang, Kun;Park, Ju-Yong;Park, Min Hyuk
    • Ceramist
    • /
    • v.22 no.4
    • /
    • pp.332-349
    • /
    • 2019
  • Ceramic thin films are key materials for fundamental electronic devices such as transistors and capacitors which are highly important for the state-of-the-art electronic products. Their characteristic dielectric properties enable accurate control of current conduction through channel of transistors and stored charges in capacitor electrodes. The electronic conduction in ceramic thin films is one of the most important part to understand the electrical properties of electronic device based on ceramic thin films. There have been numerous papers dealing with the electronic conduction mechanisms in emerging ceramic thin films for future electronic devices, but these studies have been rarely reviewed. Another interesting electrical characterization technique is one based on electrical pulses and following transient responses, which can be used to examine physical and chemical changes in ceramic thin films. In this review, studies on various conduction mechanisms through ceramic thin films and electrical characterization based on electric pulses are comprehensively reviewed.

The Electrical Conduction Characteristics of Silicone oils due to Viscosity Variation (점도변화에 따른 실리콘유의 전기전도특성)

  • 조경순;홍진웅;신종열;이충호;이수원
    • Electrical & Electronic Materials
    • /
    • v.10 no.9
    • /
    • pp.945-951
    • /
    • 1997
  • Inorder to investigated electrical conduction characteristics of silicone oils due to viscosity variation we studied the electrical conduction properties at temperature range of 10~110[$^{\circ}C$] and electrical field from 1 to 1.33$\times$10$^4$[V/cm] The viscosity of used specimens was low viscous(1, 2, 5[cSt]) silicone oils. It was shown the ohmic conduction characteristics in low temperature and low field by Ion dipole and humidity included specimen. And we known the conduction mechanism due to electron injection by Schottky's effect in the high temperature an d high field region.

  • PDF

Dependence of Conduction Path for Device Parameter of DGMOSFET Using Series (급수를 이용한 DGMOSFET에서 소자 파라미터에 대한 전도중심 의존성)

  • Han, Jihyung;Jung, Hakkee;Jeong, Dongsoo;Lee, Jongin;Kwon, Ohshin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.835-837
    • /
    • 2012
  • In this paper, we have been analyzed conduction path by device parameter of double gate(DG) structure that have top gate and bottom gate. The Possion equation is used to analytical. The change of conduction path have been investigated for various channel lengths, channel thickness and gate oxide thickness using this model, given that these parameters are very important in design of DGMOSFET. The optimum channel doping concentration is determined as the deviation of conduction path is considered according to channel doping concentration.

  • PDF

Space Charge Behaviors of New Insulating Materials for URD cables (새로운 지중배전케이블용 절연재료의 공간전하 거동)

  • 고정우;서광석;김종은;남윤선;김덕주
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.207-210
    • /
    • 1998
  • Electrical properties such as space charge distribution and electrical conduction of XLPE/VLDPE blends were studied. When the VLDPE is blended, residual charge inside XLPE increases. In case of electrical conduction characteristics, there were no changes in electrical conduction mechanism, space charge limited conduction. XLPE/VLDPE blend including crosslinking coagent showed relatively small current density. It might be due to the carbonyl group in crosslinking coagent.

  • PDF

Electrical Conduction Characteristics of Ultra High Voltage Cable for Prevention of Electrical Fires (전기 방재를 위한 초고압케이블의 전기 전도 특성)

  • Park, Hee-Doo;Park, Ha-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.216-217
    • /
    • 2007
  • In this paper we investigated the volume resistivity and AC conduction current according to the temperature and voltage. As a result, the volume resistivity comes to be small according to the measurement temperature and voltage. AC conduction current of the heat treatment specimen is increased because of the decrease of insulation.

  • PDF

Hall Factor in the Quantum Well Structure with Indirect Conduction Minima (간접천이대를 갖는 양자우물 구조에서의 Hall 상수)

  • Lee, Jae Chul;Chun, Sang Kook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.6
    • /
    • pp.421-424
    • /
    • 2013
  • The Hall factor in a quantum well structure with X or L-type indirect conduction valleys is calculated for various strain conditions. The two-dimensional constant energy surfaces of occupied valleys are proven to be identical. As a result, the Hall factor depends on the relative direction of occupied valleys to the growth direction, regardless of the number of occupied valleys. This work is widely applicable to the two-dimensional structure with indirect conduction minima for any growth direction and under different strain conditions.

A Study on the Electric Conduction Mechanism of Polyimide Ultra-Thin Films

  • Jeong, Soon-Wook;Park, Won-Woo;Lee, Sang-Jae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.238-242
    • /
    • 2006
  • Polyimide is a well-known organic dielectric material, which has not only high chemical and thermal stability but also good electrical insulating and mechanical properties. In this research, the electric conduction mechanism of PI Ultra-Thin Films was investigated at room temperature. At low electric field, ohmic conduction $(I{\propto}V)$ was observed and the calculated electrical conductivity was about $4.23{\times}10^{-15}{\sim}9.81{\times}10^{-15}\;S/cm$. At high electric field, nonohmic conduction $(I{\propto}V^2)$ was observed and the conduction mechanism was explained by space charge limited region effect. The dielectric constant of PI Ultra-Thin Films was about 7.0.

Effects of Surfactant in Semicon Electrode on Electrical Conduction of XLPE (반도전 전극에 들어 있는 계면활성제가 XLPE의 전기전도 특성에 미치는 영향)

  • 조준상;서광석;이건주
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.3
    • /
    • pp.227-234
    • /
    • 2000
  • Electrical conduction characteristics of crosslinked polyethylene(XLPE) were investigated using an electrode made of semicon material containing a surfactant. When the semicon material is used as an electrode the conduction of XLPE obeys a space charge limited conduction(SCLC) mechanism which holds true for both control and surfactant-containing semicon electrodes. Conduction currents get higher with the addition of surfactant in the semicon electrodes while the charge mobility increases with the increase of surfactant content in the semicon electrode. The diffusion of surfactant molecules into the XLPE was confirmed via a $\mu$-FTIR analysis. It was found through a measurement of spatial charge distributions that the surfactant in the semicon electrodes enhances the injection of negative charge into the XLPE from the electrode. Experimental results and their origins are discussed in detail.

  • PDF

The Design Criteria and Conduction Noise Reduction of Electronic Ballasts (전자식안정기의 설계기준 및 전도노이즈 저감)

  • 권진욱;최인식;박영진;윤덕종;홍순찬
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.3
    • /
    • pp.409-419
    • /
    • 1994
  • This paper deals with the design criteria and conduction noise reduction of electronic ballast system which is based on half-bridge series inverters. The system is theoretically analyzed in six modes and operating frequency range is selected to obtain the high efficacy and no sound noise. It is proposed the criteria for determining the values of L and C which are the dey points in system design Because of high operating frequency, electromagnetic noise, especially conduction noise, is a serious problem in electronic ballasts. To reduce the conduction noise, the operation and attenuation characteristics of noise filter are analyzed and the method to determine the values of filter elements is proposed. Also, the parasitic components of the inductor and capacitor are taken into consideration in filter analysis. Digital simulations and experiments are carried out to prove the theoretical results. And perfor mances of the system are verified through tests.