• Title/Summary/Keyword: Electronic Compensator

Search Result 103, Processing Time 0.024 seconds

A Study on the Power Factor Improvement of V47-660 kW Wind Turbine Generation System in Jeju Wind Farm (제주 풍력발전 단지의 V47-660 kW 시스템의 역률개선에 관한 연구)

  • Kim, Eel-Hwan;Jeon, Young-Jin;Kim, Jeong-Woong;Kang, Geong-Bo;Huh, Jong-Chul;Kim, Gun-Hoon
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.3
    • /
    • pp.45-53
    • /
    • 2003
  • This paper presents a study on the power factor improvement of V47- 660 [kW] Wind Turbine Generation System (WTGS) in Jeju wind farm, as a model system in this paper. In this system, the power factor correction is controlled by the conventional method with power condensor banks. Also, this system has only four bank steps, and each one capacitor bank step is cut in every one second when the generator has been cut in. This means that it is difficult to compensate the reactive power exactly according to the variation of them. Actually, model system has very low power factor in the area of low wind speed, which is almost from 4 to 6 [m/s]. This is caused by the power factor correction using power condenser bank. To improve the power factor in the area of low wind speed, we used the static var compensator(SVC) using current controlled PWM power converter using IGBT switching device. Finally, to verify the proposed method, the results of computer simulation using Psim program are presented to support the discussions.

Realization of the Dynamic Control System for the Neural Network Analysis of the Cerebellum (소뇌의 신경회로망 해석을 위한 운동제어계의 실현)

  • 이명호
    • Journal of Biomedical Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.47-54
    • /
    • 1981
  • This paper deals with a new approach to the modelling of neural interactions in the cerebellar cortex to construct a general purpose electronic simulation model. Since physiological data show that cerebellar neural activity changes in an approximately pulse manner in response to pulse stimulation, the differences in timing between excitation and inhibition of cerebellar cells will be treated as pure time delays and the transfer functions of the cells will be presented by pure gains. The parameters to be discussed in this paper are the coupling coefficients between a cell and its several inputs, the magnitude of a coupling coefficient which is presented as a measure of how much influnce a particular has on its target cell. And also this paper has been proposed that the cerrbellum engaged in improving the overall performance of the motor control system, i.e., the cerebellum is a compensator.

  • PDF

A Modeling Method of Load Section on High Voltage Distribution Line Integrated with Dispersed Generation System for Real-Time Optimal Voltage Regulation (분산형전원이 도입된 배전계통의 리얼타임 최적전압조정을 위한 부하구간 모델링방법)

  • Kim, Jae-Eon;Kim, Tae-Eung
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.699-703
    • /
    • 1999
  • It is known that the LDC(Line-Drop Compensator) becomes to lose the function of proper voltage regulation for its load currents due to the real and reactive power generated by DGS(Dispersed Generation System), when DGS is introduced into the power distribution system of which the voltage is controlled by LDC. Therefore, in that case, it is very difficult to regulate the distribution line voltage properly by using LDC. One possible solution for this problem is the real-time voltage regulation method which is to optimally regulate the sending-end voltage in real-time by collecting the real-time load data of each load data of each load section between measuring points and by calculating the optimal seding-end voltage value from them. For this, we must know the real-time load data of each load section. In this paper, a modeling method of representing a load section on high voltage line with DGSs as an equivalent lumped load is proposed for gaining the real-time load data. In addition a method of locating the measuring points is proposed. Then, these proposed methods are evaluated through computer simulations.

  • PDF

Modeling of Power Quality Stabilization using SMES and DVR (SMES 와 DVR을 이용한 전력계통품질 안정화 시스템 모델링)

  • Park, Sung-Yeol;Jung, Hee-Yeol;Kim, A-Rong;Kim, Jae-Ho;Park, Min-Won;Yu, In-Keun;Kim, Seok-Ho;Kim, Hae-Jong;Seong, Ki-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2251-2252
    • /
    • 2008
  • Recently, voltage sag from sudden increasing loads is also one of the major problems inside the utility network. In order to compensate the voltage sag problem, power compensation device systems could be a good solution method. In case of voltage sag, an energy source is needed to overcome the energy loss caused by the voltage sag. Superconducting Magnetic Energy Storage (SMES) is a very promising source of this energy due to its fast response of charging and discharging time. Before constructing the power electronic delivering system for the SMES, it is necessary to simulate the system to understand its behavior. Nowadays, a lot of devices have been developed to compensate voltage sag such as Dynamic Voltage Restorer (DVR), Distribution Static Compensator (D-STATCOM) and Uninterruptible Power Supply (UPS). In this paper, focus is given only on DVR system which will be simulated by using PSCAD/EMTDC software.

  • PDF

Field Programmable Gate Array Reliability Analysis Using the Dynamic Flowgraph Methodology

  • McNelles, Phillip;Lu, Lixuan
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1192-1205
    • /
    • 2016
  • Field programmable gate array (FPGA)-based systems are thought to be a practical option to replace certain obsolete instrumentation and control systems in nuclear power plants. An FPGA is a type of integrated circuit, which is programmed after being manufactured. FPGAs have some advantages over other electronic technologies, such as analog circuits, microprocessors, and Programmable Logic Controllers (PLCs), for nuclear instrumentation and control, and safety system applications. However, safety-related issues for FPGA-based systems remain to be verified. Owing to this, modeling FPGA-based systems for safety assessment has now become an important point of research. One potential methodology is the dynamic flowgraph methodology (DFM). It has been used for modeling software/hardware interactions in modern control systems. In this paper, FPGA logic was analyzed using DFM. Four aspects of FPGAs are investigated: the "IEEE 1164 standard," registers (D flip-flops), configurable logic blocks, and an FPGA-based signal compensator. The ModelSim simulations confirmed that DFM was able to accurately model those four FPGA properties, proving that DFM has the potential to be used in the modeling of FPGA-based systems. Furthermore, advantages of DFM over traditional reliability analysis methods and FPGA simulators are presented, along with a discussion of potential issues with using DFM for FPGA-based system modeling.

Design of Robust High-Speed Motion Controller with Actuator Saturation and Its Application to Precision Positioning System (구동기 포화가 있는 견실 고속 온동 제어기 설계 및 정밀 위치 결정 시스템에의 적용)

  • Park, Hyun-Raek;Kim, Bong-Keun;Shh, Il-Hong;Chung, Wan-Kyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.9
    • /
    • pp.768-776
    • /
    • 2000
  • A robust high-speed motion controller is proposed. The proposed controller consists of the proximate time optimal servomechai는 (PTOD) for high-speed motion, disturbance observer (DOB) for robustness, friction compensator, and saturation handling element, In the proposed controller, DOB basically provides the chance to apply PTOS to non-double integrator systems by drastically reducing disturbances as well as unwanted signals due to difference between real system and the double integrator model. But, in DOB-based systems, if control input is saturated due to control input PTOS and/or DOB, overall system stability cannot be guaranteed. To solve this problem, ribust stability, when the control input is saturated. Eventually, a simple saturation handling element is inserted to maintain internal stability of overall system. Also, we explain the our two saturation handling methods, Additional Saturation Element (ASE_ and Self Adjusting Saturation (SAS), are the equivalent solutions of the saturation problem to maintain internal stability. The stability and performance of the proposed controller are verified through numerical simulations and experiments using a precision linear motor system.

  • PDF

Current Limit Strategy of Voltage Controller of Delta-Connected H-Bridge STATCOM under Unbalanced Voltage Drop

  • Son, Gum Tae;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.550-558
    • /
    • 2018
  • This paper presents the current limit strategy of voltage controller of delta-connected H-bridge static synchronous compensator (STATCOM) under an unbalanced voltage fault event. When phase to ground fault happens, the feasibility to heighten the magnitude of sagging phase voltage is considered by using symmetric transformation method in delta-structure STATCOM. And the efficiency to cover the maximum physical current limit of switching device is considered by using vector analysis method that calculate the zero sequence current for balancing the cluster energy in delta connected H-bridge STATCOM. The result is simple and obvious. Only positive sequence current has to be used to support the unbalanced voltage sag. Although the relationship between combination of the negative sequence voltage with current and zero sequence current is nonlinear, the more negative sequence current is supplying, the larger zero sequence current is required. From the full-model STATCOM system simulation, zero sequence current demand is identified according to a ratio of positive and negative sequence compensating current. When only positive sequence current support voltage sag, the least zero sequence current is needed.

Modeling of 18-Pulse STATCOM for Power System Applications

  • Singh, Bhim;Saha, R.
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.146-158
    • /
    • 2007
  • A multi-pulse GTO based voltage source converter (VSC) topology together with a fundamental frequency switching mode of gate control is a mature technology being widely used in static synchronous compensators (STATCOMs). The present practice in utility/industry is to employ a high number of pulses in the STATCOM, preferably a 48-pulse along with matching components of magnetics for dynamic reactive power compensation, voltage regulation, etc. in electrical networks. With an increase in the pulse order, need of power electronic devices and inter-facing magnetic apparatus increases multi-fold to achieve a desired operating performance. In this paper, a competitive topology with a fewer number of devices and reduced magnetics is evolved to develop an 18-pulse, 2-level $\pm$ 100MVAR STATCOM in which a GTO-VSC device is operated at fundamental frequency switching gate control. The inter-facing magnetics topology is conceptualized in two stages and with this harmonics distortion in the network is minimized to permissible IEEE-519 standard limits. This compensator is modeled, designed and simulated by a SimPowerSystems tool box in MATLAB platform and is tested for voltage regulation and power factor correction in power systems. The operating characteristics corresponding to steady state and dynamic operating conditions show an acceptable performance.

A Double-Hybrid Spread-Spectrum Technique for EMI Mitigation in DC-DC Switching Regulators

  • Dousoky, Gamal M.;Shoyama, Masahito;Ninomiya, Tamotsu
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.342-350
    • /
    • 2010
  • Randomizing the switching frequency (RSF) to reduce the electromagnetic interference (EMI) of switching power converters is a well-known technique that has been previously discussed. The randomized pulse position (RPP) technique, in which the switching frequency is kept fixed while the pulse position (the delay from the starting of the switching cycle to the turn-on instant within the cycle) is randomized, has been previously addressed in the literature for the same purpose. This paper presents a double-hybrid technique (DHB) for EMI reduction in dc-dc switching regulators. The proposed technique employed both the RSF and the RPP techniques. To effectively spread the conducted-noise frequency spectrum and at the same time attain a satisfactory output voltage quality, two parameters (switching frequency and pulse position) were randomized, and a third parameter (the duty ratio) was controlled by a digital compensator. Implementation was achieved using field programmable gate array (FPGA) technology, which is increasingly being adopted in industrial electronic applications. To evaluate the contribution of the proposed DHB technique, investigations were carried out for each basic PWM, RPP, RSF, and DHB technique. Then a comparison was made of the performances achieved. The experimentally investigated features include the effect of each technique on the common-mode, differential-mode, and total conducted-noise characteristics, and their influence on the converter’s output ripple voltage.

The Synchronous Control System Design for Four Electric Cylinders (4축 전동실린더의 동기제어시스템 설계)

  • Yang, Kyong-Uk;Byun, Jung-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.12
    • /
    • pp.1209-1218
    • /
    • 2016
  • In order to safely and speedily transport a load such as a large glass plate using four electric cylinders, the synchronous error outside the permitted range should not be continuously generated between the cylinders. In this study, a methodology of synchronous control which can be applied to synchronization of four or more cylinders is developed. The synchronous control system based on the decoupling structure is composed of a reference model, position and synchronous controllers in the respective cylinders. The reference model is used for calculating the decoupled synchronous error and control input for the each cylinder. The position controller of I-PD type is designed in order that the cylinder may follow the reference signal without overshoot and input saturation. And the synchronous controller of lead compensator is designed to achieve stable and accurate synchronization through loop shaping approach. Finally, the simulation results show that the synchronization between the four cylinders can be quickly and stably while each cylinder rod is transferred to the target point under torque disturbance.