• Title/Summary/Keyword: Electron-Beam

Search Result 2,207, Processing Time 0.031 seconds

Enhanced Electromagnetic Properties of Nickel Nanoparticles Dispersed Carbon Fiber via Electron Beam Irradiation (전자선 안정화에 의한 니켈 나노 입자가 분산된 탄소섬유의 전자기적 특성 향상)

  • Lee, Yeong Ju;Kim, Hyun Bin;Lee, Seung Jun;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.9 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • Carbon fiber has received much attention owing to its properties, including a large surface-to-volume ratio, chemical and thermal stability, high thermal and electrical conductivity, and high mechanical strengths. In particular, magnetic nanopowder dispersed carbon fiber has been attractive in technological applications such as the electrochemical capacitor and electromagnetic wave shielding. In this study, the nickel-oxide-nanoparticle dispersed polyacrylonitrile (PAN) fibers were prepared through an electrospinning method. Electron beam irradiation was carried out with a 2.5 MeV beam energy to stabilize the materials. The samples were then heat-treated for stabilization and carbonization. The nanofiber surface was analyzed using a field emission scanning electron microscope (FE-SEM). The crystal structures of the carbon matrix and nickel nanopowders were analysed using X-ray diffraction (XRD). In addition, the magnetic and electrical properties were analyzed using a vibrating sample magnetometer (VSM) and 4 point probe. As the irradiation dose increases, the density of the carbon fiber was increased. In addition, the electrical properties of the carbon fiber improved through electron beam irradiation. This is because the amorphous region of the carbon fiber decreases. This electron beam effect of PAN fibers containing nickel nanoparticles confirmed their potential as a high performance carbon material for various applications.

Objective Aperture Effects for the Quantitative Analysis in Electron Tomography (전자토모그래피의 정량적 분석에서 대물렌즈 조리개의 영향)

  • Kim, Jin-Gyu;Lee, Sang-Hee;Kweon, Hee-Seok;Jeong, Jong-Man;Jeong, Won-Gu;Lee, Su-Jeong;Jou, Hyeong-Tae;Kim, Youn-Joong
    • Applied Microscopy
    • /
    • v.38 no.4
    • /
    • pp.285-291
    • /
    • 2008
  • We have evaluated the effects of experimental factors on transmitted electron beam intensities for quantitative analysis in electron tomography. For the correct application of Beer's law in electron tomography, the transmitted beam intensity should reflect the net effect of mass properties on beam path. So, the any other effects of the objective aperture and the specimen holder on beam path should be removed. The cut-off effects of objective aperture were examined using Quanti-foil holey carbon film and a transmission electron microscope operated at 120 kV. The transmitted beam intensities with $30{\mu}m$ objective aperture dropped about 16.7% compared to electron beam intensities without the objective aperture. Also, the additional losses of about 14.2% at high tilt angles were occurred by cut-off effects of the objective apertures. For the precise quantitative analysis in electron tomography, the effect of the objective aperture on transmitted electron beam intensities should be considered. It is desirable that 2-D tilt series images are obtained without the objective aperture for correct application of Bee's law.

Measurement of secondary electron emission coefficient(${\gamma}$) with oblique low energy ion and work function ${\phi}_{\omega}$ of theMgO thin film in AC-PDPs

  • Park, W.B.;Lim, J.Y.;Oh, J.S.;Jeong, H.S.;Jung, K.B.;Jeon, W.;Cho, G.S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.507-510
    • /
    • 2004
  • Oblique ion-induced secondary electron emission coefficient(${\gamma}$) with low energy ..and work function ${\phi}_{\omega}$(${\theta}$ = 0 and ${\theta}$ = 20) of the MgO thin film in AC-PDPs has been measured by ${\gamma}$-FIB system. The MgO thin film has been deposited from sintered material under electron beam evaporation method. The energy of $He^+$ ions used has been ranged from 50eV to 150eV. Oblique ion beam has been chosen to be 10 degree, 20 degree and 30 degree. It is found that the higher secondary electron emission coefficient(${\gamma}$) has been achieved by the higher oblique ion beam up to inclination angle of 30 degree than the perpendicular incident ion beam.

  • PDF

Alignment Effect of a Nematic Liquid Crystal on Deposited SiOx Thin-Film Surface with e-beam Evaporation

  • Oh, Yong-Cheul;Lee, Dong-Gyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.305-308
    • /
    • 2006
  • We have studied liquid crystal (LC) aligning capabilities for homeotropic alignment and the control of tilt angles on the $SiO_{x}$ thin film by electron beam evaporation method. A high tilt angle of about $86.5^{\circ}$ was obtained, and also the suitable tilt angle of the NLC on the $SiO_{x}$ thin film at $20{\sim}50\;nm$ thickness with e-beam evaporation can be achieved. The uniform LC alignment on the $SiO_{x}$ thin film surfaces with electron beam evaporation can be achieved. It is considerated that the LC alignment on the $SiO_{x}$ thin film by electron beam evaporation is attributed to elastic interaction between LC molecules and micro-grooves at the $SiO_{x}$ thin film surface created by evaporation.

A Study on the Influence of Pure Iron Purity of Electric Lens on the Electron Beam Control (전자빔 가공기의 전자렌즈 순철순도가 빔 제어에 미치는 영향)

  • Lee Chan-Hong;Ro Seung-Kook
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.149-153
    • /
    • 2005
  • The electron beam machining provides very high resolution up to nanometer scale, hence the E-beam writing technology is rapidly growing in MEMS and nano-engineering areas. In the optical column of the e-beam writer, there are several lenses condensing and focusing electron beams from electron gun with fringing magnetic fields. The polepieces of these lenses are usually made with high purity iron which is hard to fabricate and very expensive. In this paper, the possibility of using polepiece of object lens composed with pure iron and low carbon steel was examined to reduce cost. The magnetic field at object lens was calculated with finite element method, and practical focusing qualities of SEM pictures were observed comparing for the object lens polepieces with pure iron and two type of composed with low carbon steel.

  • PDF

Measurement of Bremsstrahlung Radiation with Electron Beam Energy

  • Srivastava, R.P.;Chaurasia, P.P.;Prasiko, G.;Jha, A.K.
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.235-236
    • /
    • 2002
  • A Klystron powered dual photon energy electron linear accelerator 2300 C/D from Varian Associates has been installed in our center. From the radiological safety view as well as treatment planning, the output (contamination) of Bremsstrahlung Radiation with electron beam energy determined accurately. It has been found 0.5% to 4.7% with increasing the electron beam energy which is the clinically not much significant in the treatment of the malignant diseases with the treatment of electron beam.

  • PDF

Electron Beam Mediated Simple Synthetic Route to Preparing Layered Zinc Hydroxide

  • Bae, Hyo-Sun;Jung, Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1949-1954
    • /
    • 2012
  • We have developed a novel and eco-friendly synthetic route for the preparation of a two-dimensional layered zinc hydroxide with intercalated nitrate anions. The layered zinc hydroxide nitrate, called 'zinc basic salt', was, in general, successfully synthesized, using an electron beam irradiation technique. The 2-propanol solutions containing hydrated zinc nitrate were directly irradiated with an electron-beam at room temperature, under atmospheric conditions, without stabilizers or base molecules. Under electron beam irradiation, the reactive OH radicals were generated by radiolysis of water molecules in precursor metal salts. After further radiolytic processes, the hydroxyl anions might be formed by the reaction of solvated electrons and the OH radical. Finally, the $Zn_5(OH)_8(NO_3)_2{\cdot}2H_2O$ was precipitated by the reaction of zinc cation and hydroxyl anions. Structure and morphology of obtained compounds were characterized by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and high resolution transmission electron microscopy (HR-TEM). The chemical components of the products were determined by Fourier transform infrared spectroscopy (FT-IR) and elemental analysis (EA). The thermal behavior of products was studied by thermogravimetric (TG) and differential thermal analysis (DTA).

Electron beam weldability of titanium alloy (타이타늄합금의 전자빔용접성)

  • Lee, Chae-Hun;Yun, Jong-Won;Park, No-Gwang
    • Laser Solutions
    • /
    • v.10 no.4
    • /
    • pp.13-17
    • /
    • 2007
  • Electron beam weldability was investigated for 1mm thick cold rolled sheets of commercially pure grade titanium and Ti-6Al-4V alloy. Accelerating voltage of 40kV, beam current of 6mA, and weld speed of 0.8m/min was used and focal position of focused electron beam was just on the surface of workpiece. Microstructure of weld metal, the heat affected zone and base metal was observed using optical microscope. Vickers hardness was measured across the welds and the transverse tensile test was carried out. Hydroformability test was also carried out for the butt welded coupons of commercially pure grade titanium. For the electron beam welded C P Ti, the average grain size was equiaxed $\alpha(15{\sim}25{\mu}m)$ for base metal, coarse equiaxed $\alpha(80{\sim}200{\mu}m)$ for weld metal and annealed and enlarged grain($40{\sim}120{\mu}m$) for the HAZ. The vickers hardness of C P Ti was $180{\sim}200Hv$ for base metal, and $160{\sim}180Hv$ for the weld metal and the HAZ. For the electron beam welded Ti-6Al-4V alloy, the vickers hardness was 360Hv for the base metal, abd $400{\sim}425Hv$ for the weld metal and the HAZ. All the failure occurred at the base metal, when the transverse weld tensile test was carried out for both electron beam welded C P Ti and Ti-6Al-4V alloy. The formability of electron beam welded C P Ti was decreased compared with that of C P Ti base alloy.

  • PDF

A Consideration on the Characteristics of Electron Beam Dose Distributions for Clinical Applications (임상적용을 위한 전자선의 선량분포 특성에 대한 고찰)

  • Cha, Dong-Soo
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.1
    • /
    • pp.65-69
    • /
    • 2010
  • High energy electron beams were to concentrically dose inside a tumor and more energy is a shape decreased of dose. Therefore, it is useful to radiation therapy of a tumor. Also high energy electron beams ionized into collision with a atom in structure material of tissue and it has big changes to dose distribution by multiple scattering. The study had to establish characteristic of electron beams from interaction of electron beams and materials. Experiment method was to measure dependence of electron beam central axis for depth dose curve, field flatness and symmetry and field size dependence. The results were able to evaluate data for a datum pint of electron beam. Also radiotherapy has to be considered for not only energy pencil of lines but characteristic, electron guide and isodose curves distribution.

  • PDF