• 제목/요약/키워드: Electron wavelength

검색결과 379건 처리시간 0.032초

Effects of Hole Transport Layer Using Au-ionic Doping SWNT on Efficiency of Organic Solar Cells

  • Min, Hyung-Seob;Jeong, Myung-Sun;Choi, Won-Kook;Kim, Sang-Sig;Lee, Jeon-Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.434-434
    • /
    • 2012
  • Despite recent efforts for fabricating flexible transparent conducting films (TCFs) with low resistance and high transmittance, several obstacles to meet the requirement of flexible displays still remain. Indium tin oxide (ITO) thin films, which have been traditionally used as the TCFs, have a serious obstacle in TCFs applications. SWNTs are the most appropriate materials for conductive films for displays due to their excellent high mechanical strength and electrical conductivity. Recently, it has been demonstrated that acid treatment is an efficient method for surfactant removal. However, the treatment has been reported to destroy most SWNT. In this work, the fabrication by the spraying process of transparent SWNT films and reduction of its sheet resistance by Au-ionic doping treatment on PET substrates is researched. Arc-discharge SWNTs were dispersed in deionized water by adding sodium dodecyl sulfate (SDS) as surfactant and sonicated, followed by the centrifugation. The dispersed SWNT was spray-coated on PET substrate and dried on a hotplate. When the spray process was terminated, the TCF was immersed into deionized water to remove the surfactant and then it was dried on hotplate. The TCF film was then was doped with Au-ionic doping treatment, rinsed with deionized water and dried. The surface morphology of TCF was characterized by field emission scanning electron microscopy. The sheet resistance and optical transmission properties of the TCF were measured with a four-point probe method and a UV-visible spectrometry, respectively. This was confirmed and discussed on the XPS and UPS studies. We show that 87 ${\Omega}/{\Box}$ sheet resistances with 81% transmittance at the wavelength of 550 nm. The changes in electrical and optical conductivity of SWNT film before and after Au-ionic doping treatments were discussed. The effects of hole transport interface layer using Au-ionic doping SWNT on the performance of organic solar cells were investigated.

  • PDF

Luminescence properties of InGaN/GaN green light-emitting diodes grown by using graded short-period superlattice structures

  • Cho, Il-Wook;Na, Hyeon Ji;Ryu, Mee-Yi;Kim, Jin Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.279.2-279.2
    • /
    • 2016
  • InGaN/GaN multiple quantum wells (MQWs) have been attracted much attention as light-emitting diodes (LEDs) in the visible and UV regions. Particularly, quantum efficiency of green LEDs is decreased dramatically as approaching to the green wavelength (~500 nm). This low efficiency has been explained by quantum confined Stark effect (QCSE) induced by piezoelectric field caused from a large lattice mismatch between InGaN and GaN. To improve the quantum efficiency of green LED, several ways including epitaxial lateral overgrowth that reduces differences of lattice constant between GaN and sapphire substrates, and non-polar method that uses non- or semi-polar substrates to reduce QCSE were proposed. In this study, graded short-period InGaN/GaN superlattice (GSL) was grown below the 5-period InGaN/GaN MQWs. InGaN/GaN MQWs were grown on the patterned sapphire substrates by vertical-metal-organic chemical-vapor deposition system. Five-period InGaN/GaN MQWs without GSL structure (C-LED) were also grown to compare with an InGaN/GaN GSL sample. The luminescence properties of green InGaN/GaN LEDs have been investigated by using photoluminescence (PL) and time-resolved PL (TRPL) measurements. The PL intensities of the GSL sample measured at 10 and 300 K increase about 1.2 and 2 times, respectively, compared to those of the C-LED sample. Furthermore, the PL decay of the GSL sample measured at 10 and 300 K becomes faster and slower than that of the C-LED sample, respectively. By inserting the GSL structures, the difference of lattice constant between GaN and sapphire substrates is reduced, resulting that the overlap between electron and hole wave functions is increased due to the reduced piezoelectric field and the reduction in dislocation density. As a results, the GSL sample exhibits the increased PL intensity and faster PL decay compared with those for the C-LED sample. These PL and TRPL results indicate that the green emission of InGaN/GaN LEDs can be improved by inserting the GSL structures.

  • PDF

The Electrical, Optical and Structural Characteristics of ITO Films Formed by RF Reactive Magnetron Sputtering (저온 스퍼터링법으로 증착된 ITO박막의 온도 변화에 따른 구조, 표면 및 전기적 특성)

  • Lee, Seok-Ryoul;Choi, Jae-Ha;Kim, Ji-Soo;Jung, Jae-Hak;Lee, Lim-Soo;Kim, Jae-Yeal
    • Journal of the Korean Vacuum Society
    • /
    • 제20권1호
    • /
    • pp.30-34
    • /
    • 2011
  • We investigated the structural, electrical and optical characteristics of thin films with ITO deposited by a low temperature RF reactive magnetron sputtering. The deposited thin films were annealed for 2 hours at various temperatures of $50^{\circ}C$, $100^{\circ}C$, $150^{\circ}C$, $200^{\circ}C$ and $250^{\circ}C$ and were analyzed by using X-ray diffractometer, scanning electron microscopy and 4 point probe. The films annealed at temperatures higher than $150^{\circ}C$ were found to be crystallized and their electrical resistance were decreased from $40{\Omega}cm$to $18{\Omega}cm$. The optical transmittance of the film annealed at $150^{\circ}C$ was increased by over 87% in the 450 nm ~ 900 nm wavelength range. Our results indicate that the films with ITO deposited at even a low temperature can show better optical and electrical properties through a proper heat treatment.

A Study of Copper Production Techniques at the Archaeological Site in Gwanbukri, Buyeo in the 6th and 7th Centuries (6~7C 부여 관북리 유적의 동 생산기법 연구)

  • Lee, Ga Young;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • 제36권3호
    • /
    • pp.162-177
    • /
    • 2020
  • Research was conducted to characterize the copper production and smelting process with 11 copper smelting by-products (copper slag and copper crucible) excavated from the NA and LA areas at the Gwanbuk-ri archeological site in Buyeo. Scanning electron microscopy-energy dispersive spectroscopy, wavelength dispersive X-ray fluorescence, X-ray diffraction, and Raman microspectroscopy were employed in the analysis. The research results reveal that the copper slag from Gwanbuk-ri contained silicate oxide, magnetite, fayalite, and delafossite, which are typical characteristics of crucible slag and refined slag. The outward appearance and microstructure of the slag were grouped as follows: 1. glassy matrix + Cu prill, 2. glassy matrix + Cu prill + magnetite, 3. silicate mineral matrix + Cu prill, 4. crystalline (delafossite and magnetite) + amorphous (Cu prill), 5. magnetite + fayalite, and 6. slag from slag. The copper slags from Guanbuk-ri were found to contain residues of impurities such as SiO2, Al2O3, CaO, SO4, P2O5, Ag2O, and Sb2O3 in their microstructure, and, in some cases, it was confirmed that copper, tin and lead are alloys. These results indicate that refining of intermediate copper(including impurities) and refining of alloys of copper(including impurities) - tin and refining of copper(including impurities) - tin - lead took place during the copper production process at Gwanbuk-ri, Buyeo.

Fabrication of ATO thin film for IR-cut off by sol-gel method (솔-젤 법에 의한 적외선 차단 ATO 박막 제조)

  • Kim, Jin-Ho;Lee, Kwang-Hee;Lee, Mi-Jai;Hwang, Jonghee;Lim, Tae-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • 제23권5호
    • /
    • pp.230-234
    • /
    • 2013
  • IR cut-off thin films consisted of ATO nanoparticles were successfully fabricated by sol-gel method. The coating solution was synthesized with organic/inorganic hybrid binder and ATO colloidal solution and ATO thin films were coated on a slide glass with the withdrawal speed of 5~40 mm/s. As the withdrawal speed increased from 5 mm/s to 40 mm/s, the thickness of coating thin films also increased from $1.05{\mu}m$ to $4.25{\mu}m$ and the IR cut-off in wavelength of 780~2500 nm increased from 49.5 % to 66.7 %. In addition, the pencil hardness of ATO thin films dried at $80^{\circ}C$ was ca. 5H and the coating films were not removed after a cross cutter tape test because of the hybrid binder synthesized with tetraethylorthosilicate and methyltrimethoxysilane. The surface morphologies, optical properties and film thickness of prepared thin films with a different withdrawal speed were measured by field emission scanning electron microscope (FE-SEM), UV-Vis spectrophotometer, and Dektak.

Properties of TiO2 thin films fabricated with surfactant by a sol-gel method (Sol-gel 법에 의하여 제조된 계면활성제 첨가 TiO2 박막 특성)

  • Kim, Jin-Ho;Jung, Hyun-Ho;Hwang, Jong-Hee;Cho, Yong-Seok;Lim, Tae-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • 제20권6호
    • /
    • pp.267-271
    • /
    • 2010
  • Super hydrophilic and high transparent $TiO_2$ thin films were successfully fabricated by sol-gel method without an irradiation of UV light. In addition, surfactant Tween 80 was used for increasing the transmittance of the thin films. When the contents of Tween 80 in $TiO_2$ solution were 0.0, 1.0, 3.0, 5.0 wt%, the transmittance of $TiO_2$ thin films was ca. 74.31%, 74.25%, 79.69%, 81.99% at 550 nm wavelength, respectively. The contact angles of fabricated $TiO_2$ thin films with or without Tween 80 were from ca. $4.0^{\circ}$ to $4.5^{\circ}$. The $TiO_2$ thin films annealed over $400^{\circ}C$ showed anatase crystal structure and the photocatalytic property that decomposed methyl orange with UV irradiation. The surface morphologies, optical properties and contact angle of prepared thin films with different contents of Tween 80 were evaluated by field emission scanning electron microscope (FE-SEM), X-ray diffratometer (XRD), UV-Vis spectrophotometer and contact angle meter.

Fabrication of a Schottky Type Ultraviolet Photodetector Using GaN Layer (GaN를 이용한 Schottky diode형 자외선 수광소자의 제작)

  • Seong, Ik-Joong;Lee, Suk-Hun;Lee, Chae-Hyang;Lee, Yong-Hyun;Lee, Jung-Hee;Hahm, Sung-Ho
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • 제36D권6호
    • /
    • pp.28-34
    • /
    • 1999
  • We fabricated a planar ultra-violet photodetector whose ohmic and schottky contacts were respectively formed with evaporated Al and Pt on the GaN layer. To examine the applicability of the device to the UV sensor, we investigated its electrical and optical characteristics. The GaN layer on the sapphire waver had $7.8{\times}10^{16}cm^{-3}$ of doping concentnation and the $138 cm^2/V{\cdot}s$ of electron mobility and it absorbed the spectrum of the light below 325 nm wavelength. It had the responsivity of 2.8 A/W of at 325 nm, and the signal to noise ratio(SNR) of $4{\times}10^4$, and the noise equivalent power(NEP) of $3.5{\times}10^9$W under 5 V reverse bias. These results confirmed that the GaN schottky diode had a solar blind properly when it was applied to the UV photodetector.

  • PDF

Fabrication of superhydrophobic $TiO_2$ thin films by wet process (습식 공정법에 의한 초발수 $TiO_2$ 박막 제조)

  • Kim, Jin-Ho;Jung, Hyun-Ho;Hwang, Jong-Hee;Lim, Tae-Young;Choi, Duk-Gun;Cheong, Deock-Soo;Kim, Sae-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • 제19권5호
    • /
    • pp.262-267
    • /
    • 2009
  • Superhydrophobic $TiO_2$ thin films were successfully fabricated on a glass substrate by wet process. Layer-by-layer (LBL) deposition and liquid phase deposition (LPD) methods were used to fabricate the thin films of micro-nano complex structure with a high roughness. To fabricate superhydrophobic $TiO_2$ thin films, the (PAH/PAA) thin films were assembled on a glass substrate by LBL method and then $TiO_2$ nanoparticles were deposited on the surface of (PAH/PAA) thin film by LPD method, Subsequently, hydrophobic treatment using fluoroalkyltrimethoxysilane (FAS) was carried out on the surface of prepared $TiO_2$ thin films. The $TiO_2$ thin film fabricated with 45 minutes immersion time on $(PAH/PAA)_{10}$ showed the RMS roughness of 65.6nm, water contact angel of $155^{\circ}$ and high transmittance of above 80% (>650nm in wavelength) after the hydrophobic treatment. The Surface morphologies, optical properties and contact angel of prepared thin films with different experimental conditions were measured by field emission scanning electron microscope (FE-SEM), atomic force microscope (AFM), UV-Vis spectrophotometer and contact angle meter.

Quantitative analysis of formation of oxide phases between SiO2 and InSb

  • Lee, Jae-Yel;Park, Se-Hun;Kim, Jung-Sub;Yang, Chang-Jae;Kim, Su-Jin;Seok, Chul-Kyun;Park, Jin-Sub;Yoon, Eui-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.162-162
    • /
    • 2010
  • InSb has received great attentions as a promising candidate for the active layer of infrared photodetectors due to the well matched band gap for the detection of $3{\sim}5\;{\mu}m$ infrared (IR) wavelength and high electron mobility (106 cm2/Vs at 77 K). In the fabrication of InSb photodetectors, passivation step to suppress dark currents is the key process and intensive studies were conducted to deposit the high quality passivation layers on InSb. Silicon dioxide (SiO2), silicon nitride (Si3N4) and anodic oxide have been investigated as passivation layers and SiO2 is generally used in recent InSb detector fabrication technology due to its better interface properties than other candidates. However, even in SiO2, indium oxide and antimony oxide formation at SiO2/InSb interface has been a critical problem and these oxides prevent the further improvement of interface properties. Also, the mechanisms for the formation of interface phases are still not fully understood. In this study, we report the quantitative analysis of indium and antimony oxide formation at SiO2/InSb interface during plasma enhanced chemical vapor deposition at various growth temperatures and subsequent heat treatments. 30 nm-thick SiO2 layers were deposited on InSb at 120, 160, 200, 240 and $300^{\circ}C$, and analyzed by X-ray photoelectron spectroscopy (XPS). With increasing deposition temperature, contents of indium and antimony oxides were also increased due to the enhanced diffusion. In addition, the sample deposited at $120^{\circ}C$ was annealed at $300^{\circ}C$ for 10 and 30 min and the contents of interfacial oxides were analyzed. Compared to as-grown samples, annealed sample showed lower contents of antimony oxide. This result implies that reduction process of antimony oxide to elemental antimony occurred at the interface more actively than as-grown samples.

  • PDF

Calcium Aluminate Phosphor Supported $TiO_2$ Nanoparticles (산화(酸化)티탄 나노입자(粒子)가 담지(擔持)된 칼슘 알루미늄 형광체(螢光體))

  • Thube, Dilip R.;Kim, Jin-Hwan;Kang, Suk-Min;Ryu, Ho-Jin
    • Resources Recycling
    • /
    • 제18권4호
    • /
    • pp.24-30
    • /
    • 2009
  • Rare earth based calcium aluminate phosphor ($CaAl_2O_4:Eu^{2+}$, $Nd^{3+}$) supported $TiO_2$ nanoparticles are synthesized by using sol-gel method, which are further characterized using powder X-ray diffraction (XRD), fourier transform infrared (FT-IR), diffuse reflectance UV-Visible spectroscopy (DRS UV-Vis) and transmission electron microscopy (TEM). The XRD pattern of as-prepared and sintered phosphor supported $TiO_2$ does not show the tendency to change the crystal structure from anatase to rutile phase up to $600^{\circ}C$. This indicates that the phosphor support might inhibit the densification and crystallite growth by providing dissimilar boundaries. The diffuse reflectance spectral (DRS) measurements showed shift towards longer wavelength indicating reduction in the band-gap energy as compared to free $TiO_2$. The FT-IR spectra of phosphor supported $TiO_2$ nanoparticles show shift in the peak positions to lower wavelengths. This indicates that the $TiO_2$ nanoparticles are not free, but covalently bonded to the phosphor support. TEM micrographs show presence of crystalline and spherical $TiO_2$ nanoparticles (8 - 15 nm diameter) dispersed uniformly on the surface of phosphor.