• Title/Summary/Keyword: Electron transition

Search Result 681, Processing Time 0.029 seconds

Review on Electronic Correlations and the Metal-Insulator Transition in SrRuO3

  • Pang, Subeen
    • Applied Microscopy
    • /
    • v.47 no.3
    • /
    • pp.187-202
    • /
    • 2017
  • The classical electron band theory is a powerful tool to describe the electronic structures of solids. However, the band theory and corresponding density functional theory become inappropriate if a system comprises localized electrons in a scenario wherein strong electron correlations cannot be neglected. $SrRuO_3$ is one such system, and the partially localized d-band electrons exhibit some interesting behaviors such as enhanced effective mass, spectral incoherency, and oppression of ferromagnetism and itinerancy. In particular, a Metal-Insulator transition occurs when the thickness of $SrRuO_3$ approaches approximately four unit cells. In the computational studies, irrespective of the inclusion of on-site Hubbard repulsion and Hund's coupling parameters, correctly depicting the correlation effects is difficult. Because the oxygen atoms and the symmetry of octahedra are known to play important roles in the system, scrutinizing both the electronic band structure and the lattice system of $SrRuO_3$ is required to find the origin of the correlated behaviors. Transmission electron microscopy is a promising solution to this problem because of its integrated functionalities, which include atomic-resolution imaging and electron energy loss spectroscopy.

The magnetic properties of optical Quantum transitions of electron-piezoelectric potential interacting systems in CdS and ZnO

  • Lee, Su Ho
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.61-67
    • /
    • 2018
  • We investigated theoretically the magnetic field dependence of the quantum optical transition of qusi 2-Dimensional Landau splitting system, in CdS and ZnO. In this study, we investigate electron confinement by square well confinement potential in magnetic field system using quantum transport theory(QTR). In this study, theoretical formulas for numerical analysis are derived using Liouville equation method and Equilibrium Average Projection Scheme (EAPS). In this study, the absorption power, P (B), and the Quantum Transition Line Widths (QTLWS) of the magnetic field in CdS and ZnO can be deduced from the numerical analysis of the theoretical equations, and the optical quantum transition line shape (QTLS) is found to increase. We also found that QTLW, ${\gamma}(B)_{total}$ of CdS < ${\gamma}(B)_{total}$ of ZnO in the magnetic field region B<25 Tesla.

ROOM TEMPERATURE FERROMAGNETISM IN TRANSITION METAL DOPED OXIDE SEMICONDUCTORS, $TiO_2$ and ZnO

  • Y. H. Jeong;S-J. Han;Park, J.H.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2003.06a
    • /
    • pp.17-17
    • /
    • 2003
  • Semiconductors with ferromagnetism at room temperature has been actively searched for in recent years; a prospect of devices using both charge and spin continuously gives impetus to the activities. Transition metal doped oxide materials have been of particular interest. Co substituted ZnO [1] and TiO$_2$ [2] thin films, for example, were reported to show ferromagnetic properties at room temperature. However, various studies do not seem to converge on a definite picture [3,4,5]. The issue is rather fundamental: whether a system shows ferromagnetic properties at all, and in case it does, whether the system possesses a close coupling between magnetism and transport properties. In this talk, we shall assess the current status of transition metal doped oxide materials as room temperature ferromagnetic semiconductors.

  • PDF

Studies on the Quaternization of Tertiary Amines (Ⅳ). Kinetics and Mechanism for the Reaction of Substituted Phenacyl Tosylates with Substituted Pyridines

  • Lee, Oh-Seuk;Yoh, Soo-Dong
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.2
    • /
    • pp.99-102
    • /
    • 1985
  • Substituent effects of substrate and nucleophile for the reaction of substituted phenacyl tosylates with pyridines were determined conductometrically in acetonitrile. Activation parameters for these reactions were also calculated. The substituent effects in nucleophile were increased with electron-donating power of pyridines and Br${\o}$nsted linear relationship was shown. Rate constant was increased by both electron-donating and electron-attracting groups in the substrate. It seems that dissociative S$_{N}$2 ("loose" transition state) mechanism is operating in the case of electron-donating substituents while associative S$_{N}$2 ("tight" transition state) mechanism is operative in the case of electron-attracting substituents.

Analysis of Intramolecular Electron Transfer in A Mixed-Valence Cu(Ⅰ)-Cu(Ⅱ) Complex Using the PKS Model

  • So Hyunsoo
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.385-388
    • /
    • 1992
  • The transition probabilities for the thermal intramolecular electron transfer and the optical intervalence transfer band for a symmetric mixed-valence Cu(I)-Cu(II) compound were used to extract the PKS parameters $\varepsilon$ = -1.15, ${\lambda}$ = 2.839, and ${\nu}g$- = 923 $cm^{-1}$. These parameters determine the potential energy surfaces and vibronic energy levels. Three pairs of vibrational levels are below the top of the energy barrier in the lower potential surface. The contribution of each vibrational state to the intramolecular electron transfer was calculated. It is shown that the three pairs of vibrational states below the top of the barrier are responsible for most of the electron transfer at 261-306 K. So the intramolecular electron transfer in this system is a tunneling process. The transition probability exhibits the usual high-temperature Arrhenius behavior, but at lower temperature falls off to a temperature-independent value as tunneling from the lowest levels becomes the limiting process.

Double Transition and Magnetic Phase Transition : An Electron Fluid Condensation Model for Superconductivity (이중 전이와 자화 상전이 : 초전도성에 대한 전자 유체의 응축 모델)

  • Park, Sung-Hoon;Choi, Dong-Seek;Shin, Doo-Soon;Kim, Won-Soo
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.6
    • /
    • pp.599-606
    • /
    • 1998
  • Since the discovery of ceramic superconductor the various theoretical developments has progressed but there are no definitive description about the superconducting transition mechanism. In special, both the double transition and the various magnetic phase transition add to the complication of the understanding of HTSC. In this paper, we presented the idea of the two-step mechanism for the superconducting transition in view of the condensation model of electron fluid for superconductivity. And these concepts are successfully applied to the double transition and the magnetic phase diagram of various types of superconductivity. Therefore, both the double transition and magnetic phase transition should be the touchstone of general theory for superconductivity.

  • PDF

Effect of Transition Metal on the Thermal Stability and Mechanical Property of Fe-based Amorphous Alloys (Fe기 비정질합금의 열적안정성 및 기계적 성질에 미치는 천이금속의 영향)

  • Gook, Jin Seon;Yoon, Dong Joo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.6
    • /
    • pp.345-349
    • /
    • 2001
  • This study has investigated the effect of thermal stability and mechanical property of $Fe_{80-X}P_{10}C_6B_4M_X$(X=2, 4, 6, M=transition metal) amorphous alloys fabricated by the melt-spun process. The glass transition temperature($T_g$), crystallization temperature($T_x$) and hardness increase with decreasing electron concentration (e/a) from about 7.38 to 7.18. The decrease of e/a implies the increase in the attractive bonding state between the M elements and other constituent element. The decrease in a/e leads to the enhancement of the attractive bonding state among the constituent elements which is favorable for the increase in $T_g$, $T_x$ and hardness.

  • PDF

Simulation of Temperature-Dependent EPR Spectra of Mixed-Valence Copper (II)-Copper (I)-Complexes

  • So, Hyun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.2
    • /
    • pp.111-114
    • /
    • 1987
  • Temperature-dependent, solution EPR spectra of two mixed-valence copper(II)-copper(I) complexes have been simulated by using modified Bloch equations. The transition probability for the intramolecular electron transfer is determined from the simulation. The transition probabilities have been fitted to the Arrhenius equation to derive the activation energies. The transition probability also varies according to the solvent used.

FRACTURE TOUGHNESS CHARACTERISTICS IN HIGH ENERGY DENSITY BEAM WELDED JOINT OF HIGH TENSILE STEELS

  • Ro, Chan-Seung;Yamada, Tomoaki;Mochizuki, Masahito;Ishikawa, Nobuyuki;Bang, Han-Sur;Toyoda, Masao
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.583-588
    • /
    • 2002
  • The purpose of the study is to evaluate fracture toughness on the Laser and the electron beam welded joints of high tensile steels (HT500, HT550, HT650) by using 3-point bend CTOD and Charpy impact test. WM (weld metal) CTOD tests have been carried out using two kinds of CTOD specimen, the Laser beam welding (108mm length, and 24mm width, and 12mm thickness) and the electron beam welding (l71mm length, and 38mm width, and 19mm thickness). WM Charpy impact specimen is a standard V-notch type, and the temperature of the experiment is changed from -45 to 20 degree of centigrade. FE-analysis is also performed in order to investigate the effect of stress-strain fields on fracture characteristics. Results of the standard V-notch Charpy test are influenced by strength mis-match effect and the absorbed energy vE depends on crack path, and The transition temperature of Laser beam welded joints is more higher than that of electron beam welded joints. Results of the 3-point bend test give low critical CTOD and the crack path is in the weld metal of al specimens. These results indicate fracture toughness characteristics of the welded joints and transition temperature of HT500 are similar both a Laser beam welded joint and an electron beam welded joint. But the fracture toughness and the transition temperature of the electron beam welded joints of HT550 and HT650 are higher than those o the Laser beam welded joints.

  • PDF

Elemental Composition of the Soils using LIBS Laser Induced Breakdown Spectroscopy

  • Muhammad Aslam Khoso;Seher Saleem;Altaf H. Nizamani;Hussain Saleem;Abdul Majid Soomro;Waseem Ahmed Bhutto;Saifullah Jamali;Nek Muhammad Shaikh
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.200-206
    • /
    • 2024
  • Laser induced breakdown spectroscopy (LIBS) technique has been used for the elemental composition of the soils. In this technique, a high energy laser pulse is focused on a sample to produce plasma. From the spectroscopic analysis of such plasma plume, we have determined the different elements present in the soil. This technique is effective and rapid for the qualitative and quantitative analysis of all type of samples. In this work a Q-switched Nd: YAG laser operating with its fundamental mode (1064 nm laser wavelength), 5 nanosecond pulse width, and 10 Hz repetition rate was focused on soil samples using 10 cm quartz lens. The emission spectra of soil consist of Iron (Fe), Calcium (Ca), Titanium (Ti), Silicon (Si), Aluminum (Al), Magnesium (Mg), Manganese (Mn), Potassium (K), Nickel (Ni), Chromium (Cr), Copper (Cu), Mercury (Hg), Barium (Ba), Vanadium (V), Lead (Pb), Nitrogen (N), Scandium (Sc), Hydrogen (H), Strontium (Sr), and Lithium (Li) with different finger-prints of the transition lines. The maximum intensity of the transition lines was observed close to the surface of the sample and it was decreased along the axial direction of the plasma expansion due to the thermalization and the recombination process. We have also determined the plasma parameters such as electron temperature and the electron number density of the plasma using Boltzmann's plot method as well as the Stark broadening of the transition lines respectively. The electron temperature is estimated at 14611 °K, whereas the electron number density i.e. 4.1 × 1016 cm-3 lies close to the surface.