• Title/Summary/Keyword: Electron swarm method

Search Result 78, Processing Time 0.042 seconds

Construction of the Double Shutter Drift tube Apparatus for Electron Swarm Method (전자군방법을 위한 Double Shutter Drift Tube실험장치 구축)

  • Jeon, Byung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1483_1484
    • /
    • 2009
  • The electron collision cross sections for gases have been determined by electron beam and electron swarm method. Especially, measurements by electron swarm method is carried out by using the double shutter drift tube given by T.O.F. and Double shutter method.

  • PDF

Electron Energy Distribution Function in SF6-He Gas by Simulation (시뮬레이션에 의한 SF6-He 혼합기체에서 전자에너지 분포함수)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.1
    • /
    • pp.19-23
    • /
    • 2014
  • This paper describes the electron transport characteristics in $SF_6$-He gas calculated E/N values 0.1~700[Td] by the Monte Carlo simulation and Boltzmann equation method using a set of electron collision cross sections determined by the authors and the values of electron swarm parameters obtained by TOF method. This study gained the values of the electron swarm parameters such as the electron drift velocity, the electron ionization or attachment coefficients, longitudinal and transverse diffusion coefficients for $SF_6$-He gas at a range of E/N. A set of electron collision cross section has been assembled and used in Monte Carlo simulation to predict values of swarm parameters. The result of Boltzmann equation and Monte Carlo Simulation has been compared with experimental data by Ohmori, Lucas and Carter. The swarm parameter from the swarm study are expected to sever as a critical test of current theories of low energy scattering by atoms and molecules.

The Determination of electron collision cross sections by electron swarm method (전자군 방법에 의한 충돌단면적 결정)

  • 전병훈;박재준;하성철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.236-239
    • /
    • 2002
  • The electron-atom collision studies has been essentially use\ulcorner for testing and developing suitable theories of the scattering and collision processes, and for providing a tool for obtaining detailed information on the structure of the target atoms and molecules and final collision products. And, the development of that has also been strongly motivated by the need for electron collision data in such fields as laser physic and development, astrophysics, plasma devices, upper atmospheric processes and radiation physics. Therefore, we explains the concept and the principle of determination of the electron collision cross sections for atoms and molecules by using the present electron swarm method.

  • PDF

Determination of the Electron Collision Cross Sections by Electron Swarm Method (전자군 방법에 의한 전자충돌단면적 결정)

  • 전병훈;하성철
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.5
    • /
    • pp.435-440
    • /
    • 2003
  • The electron-atom collision studies have been essentially used for testing and developing suitable theories of the scattering and collision processes, and for providing a tool for obtaining detailed information on the structure of the target atoms and molecules and final collision products. And, the development of that has also been strongly motivated by the need for electron collision data in such fields as laser Physics and development, astrophysics, Plasma devices, upper atmospheric processes and radiation physics. The concept and the Principle of determination of the electron collision cross sections for atoms and molecules by using the present electron swarm method are explained.

Electron Swarm Parameter Characteristic in $SiH_4$ Plasma by TOF Method (TOF법을 이용한 $SiH_4$ 프라즈마중의 전자군파라미터특성)

  • Lee, Hyung-Yoon;Ha, Sung-Chul;Yu, Heoi-Young;Kim, Sang-Nam;Lim, Sang-Won;Moon, Ki-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1830-1833
    • /
    • 1997
  • This paper describes the electron transport characteristic in $SiH_4$ gas calculated for range of E/N values from $0.5{\sim}300$(Td) using a set of electron collision cross sections determined by the authors and the values of electron swarm parameters are obtained for TOF method. The results gained that the value of an electron swarm parameter such as the electron drift velocity, longitudinal and transverse diffusion coefficients with the experimental and theoretical for a range of E/N. The electron energy distributions function were analysed in monosilane at E/N : 30, 50(Td) for a case of equilibrium region in the mean electron energy. The validity of the results obtained has been confirmed by a TOF method.

  • PDF

The Analysis of the Electron Drift Velocity and Characteristics Energy in $SiH_4$ Plasma gas by Electron Swarm method (전자 Swarm법에 의한 $SiH_4$ 플라즈마의 전자이동속도 및 특성에너지 해석)

  • 이형윤;백승권;하성철
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.12 no.1
    • /
    • pp.88-93
    • /
    • 1999
  • This paper describes the electron transport characteristics in $SiH_4$ gas calculated for the range of E/n:0.5~300(Td) and Pressure:0.5, 1, 2.5(Torr) by the Monte carlo simulation and Boltzmann equation method using a set of electron collision cross sections determined by the reported results. The motion has been calculated to give swarm parameters for the electron drift velocity, longitudinal and transverse diffusion coefficients, the electron ionization coefficients, characteristics energy and the electron energy distribution function. The electron energy distributions function has been analysed in $SiH_4$ at E/N: 30, 50(Td)for a case of the equilibrium region in the mean electron energy and respective set of electron collision cross sections. The results of Monte carlo simulation and Boltzmann equation have been compared with experimental data by ohmori ad Pollock.

  • PDF

Electron Energy Distribution function in CH4 by MCS-BEq (MCS-BEq에 의한 CH4기체에서 전자에너지 분포함수)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.1
    • /
    • pp.18-22
    • /
    • 2013
  • This paper describes the information for quantitative simulation of weakly ionized plasma. We must grasp the meaning of the plasma state condition to utilize engineering application and to understand materials of plasma state. Using quantitative simulations of weakly ionized plasma, we can analyze gas characteristic. In this paper, the electron transport characteristic in $CH_4$ has been analysed over the E/N range 0.1~300[Td], at the 300[$_{\circ}\;K$] by the two term approximation Boltzmann equation method and Monte Carlo Simulation. Boltzmann equation method has also been used to predict swarm parameter using the same cross sections as input. The behavior of electron has been calculated to give swarm parameter for the electron energy distribution function has been analysed in $CH_4$ at E/N=10, 100 for a case of the equilibrium region in the mean energy. A set of electron collision cross section has been assembled and used in Monte Carlo simulation to predict values of swarm parameters. The result of Boltzmann equation and Monte Carlo Simulation has been compared with experimental data by Ohmori, Lucas and Carter. The swarm parameter from the swarm study are expected to sever as a critical test of current theories of low energy scattering by atoms and molecules.

Ionization and Diffusion Coefficients in CH4 Gas by Simulation (시뮬레이션에 의한 CH4 기체의 전리 및 확산계수)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.317-321
    • /
    • 2014
  • This paper describes the information for quantitative simulation of weakly ionized plasma. We must grasp the meaning of the plasma state condition to utilize engineering application and to understand materials of plasma state. Using quantitative simulations of weakly ionized plasma, we can analyze gas characteristic. In this paper, the electron Ionization and diffusion Coefficients in $CH_4$ has been analysed over the E/N range 0.1~300[Td], at the 300[$^{\circ}K$] by the two term approximation Boltzmann equation method and Monte Carlo Simulation. Boltzmann equation method has also been used to predict swarm parameter using the same cross sections as input. The behavior of electron has been calculated to give swarm parameter for the electron energy distribution function has been analysed in $CH_4$ at E/N=10, 100 for a case of the equilibrium region in the mean energy. A set of electron collision cross section has been assembled and used in Monte Carlo simulation to predict values of swarm parameters. The result of Boltzmann equation and Monte Carlo Simulation has been compared with experimental data by Ohmori, Lucas and Carter. The swarm parameter from the swarm study are expected to sever as a critical test of current theories of low energy scattering by atoms and molecules.

Analysis of Electron Energy Distribution Function and Transport Characteristic in SiH$_4$ Gas Plasma by MCS-BE Method (MCS-BE법을 이용한 SiH$_4$가스 프라즈마중의 전자에너지분포함수와 수송특성해석)

  • 이형윤;하성철;유회영;김상남;임상원;문기석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.154-159
    • /
    • 1997
  • This paper describes the electron transport characteristic in SiH$_4$ gas calculated for range of E/N values from 0.5~300(Td) by the Monte Calro simulation and Boltzmann equation method using a set of electron collision cross sections determined by the authors and the values of electron swarm parameters are obtained for TOF method. The results gained that the value of an electron swarm parameter such as the electron drift velocity, the electron ionization coefficients longitudinal and transverse diffusion coefficients, characteristics energy agree with thee experimental and theoretical for a range of E/N. The electron energy distributions function were analysed in monosilane at EN : 30, 50(Td) for a case of equilibrium region in the mean electron energy. The validity of the results obtained has been confirmed by a TOF method.

  • PDF

The study of electron collision cross sections and electron transport coefficients in gases (전자충돌단면적과 전자수송계수에 관한 연구)

  • Jeon, Byung-Hoon;Park, Jae-Jun;Ha, Sung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.11-14
    • /
    • 2002
  • Accurate sets of electron collision cross sections for atoms and molecules are necessary for quantitative understanding and modeling of plasma phenomena. So, in this study, we explains the concept of electron collision cross sections for gases, and the principle of determination of the electron collision cross sections for atoms and molecules by using the present electron swarm method.

  • PDF