• Title/Summary/Keyword: Electron opacity

Search Result 13, Processing Time 0.031 seconds

Anti-inflammatory and Anti-itching Effects of Herbal Medicine Complex Extracts(NI-01) (한약복합추출물(NI-01)의 항염증 및 소양감 억제 효과)

  • Kim, Hyun-A;Kim, Suk-Kyung;Kim, Bae-Hwan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.6
    • /
    • pp.341-347
    • /
    • 2020
  • The purpose of this study was to investigate the possibility of herbal medicine complex extract (NI-01), which were prepared from 6 natural materials (Cinnamomum cassia Blume, Lonicerae Flos, Paeonia suffruticosa Andrews, Arctium lappa Linne, Schzandra chinesis Bailon, Elsholtzia ciliata Hylander), as a functional material for inhibition of atopic dermatitis. anti-oxidative activity was confirmed by measuring DPPH electron donating ability and ABTS+ radical scavenging ability. Cytotoxicity and NO inhibition were measured using RAW 264.7 cells to confirm anti-inflammatory efficacy. The test substance was orally administered to the pruritus-induced ICR mice to confirm the inhibition of pruritus. The bovine cornea opacity and permeability (BCOP) assay was performed to confirm safety for irritation. NI-01 showed high antioxidant activity in DPPH and ABTS+ methods. In the anti-inflammatory effect tests with RAW 264.7 cells, NO production was inhibited at NI-01 concentrations of 50 (14.9%) and 100 (4.2%) ㎍/mL, which indicated that the anti-inflammatory effect was increased in a concentration-dependent manner. NI-01 also showed anti-itching effect after inducing of itching by compound 48/80 in ICR mice. NI-01 was proved to be a non-irritant substance in BCOP assay. The results of this study suggested that the herbal medicine combined extract (NI-01) has high antioxidant, anti-inflammatory and anti-itching effects, and safety for irritation. Therefore, herbal medicine complex extract (NI-01) is thought to be highly applicable for the inhibitory ingredients of the atopic dermatitis.

Physical, Morphological, and Chemical Analysis of Fly Ash Generated from the Coal Fired Power Plant (석탄 화력발전소에서 발생되는 석탄회 특성과 형성 분석에 관한 연구)

  • 이정언;이재근
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.146-156
    • /
    • 1998
  • Fly ash produced in coal combustion is a fine-grained material consisting mostly of spherical, glassy, and porous particles. A physical, morphological, and chemical characteristic of fly ash has been analyzed. This study may contribute to the data base of domestic fly ash, the improvement of combustion efficiency, ash recycling and ash collection in the electrostatic precipitator. The physical property of fly ash is determined using a particle counter for the measurement of ash size distribution and gravimeter. Morphological characteristic of fly ash is performed using a scanning electron micrograph and an optical microscope. The chemical components of fly ash are determined using an inductively coupled plasma emission spectrometry (ICP). The distribution of fly ash size was ranged from 15 to 25 $\mu$m in mass median diameter. Exposure conditions of flue gas temperature and duration within the combustion zone of the boiler played an important role on the morphological properties of the fly ash such as shape, relative opacity, coloration, cenosphere and plerosphere. The spherical fly ash might be generated at the condition of complete combustion. The size of fly ash was found to be increased the with particle-particle interaction of agglomeration and coagulation. Fly ash consisted of $SiO_2\;Al_2O_3\;and\;Fe_2O_3$ with 85% and carbon with 3~10% of total mass.

  • PDF

A Case Study on the Processing of Siji(試紙) in the Mid-19th Century - Focusing on Lee Mangi's Sigwon(試卷) - (19세기 중반 시지(試紙)의 가공 사례 연구 - 이만기(李晩耆) 시권(試卷)을 중심으로 -)

  • CHUN Jiyoun;OH Joonsuk
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.3
    • /
    • pp.90-101
    • /
    • 2024
  • The test answer sheets submitted by examinees in the Joseon Dynasty were called Sigwon (test papers with answers, 試卷), and Siji (blank test papers, 試紙) were generally prepared by the examinees themselves. At that time, paper was not produced as a standard product, so there was no uniformity in size or manufacturing method. Mulberry paper in the Joseon Dynasty was basically transparent, so various paper processing methods were applied for examinees to write answers on both sides. In order for ink lines to be written smoothly, Dochim (hitting paper with a wooden bat on the stone, 搗砧) or surface processing was treated. We found a 19th-century Siji (試紙) that was processed in a unique way, which led to this study. An unusual Sigwon (試卷) is one by Lee Mangi (李晩耆) from 1848 owned by the National Folk Museum of Korea. We found that an opaque white substance was thickly applied between the papers of this Siji (試紙). Through component analysis using infrared spectrophotometry, fluorescence X-ray spectroscopy, optical and polarizing microscopy, and electron microscopy, this white substance was proved to be rice starch. From these analyses, it is presumed that this Siji (試紙) was made by soaking rice flour in water to remove a significant amount of protein, and then applying wet starch containing a small amount of protein between sheets of paper. In addition, with a Siji (試紙) reproduction experiment, we found that the paper reproduced by this processing method was thick and high in whiteness and opacity. This is believed to be a production method designed to produce double-sided paper without using multiple sheets of paper, which was difficult to obtain at that time. In this study, the material processed between the sheets of paper was disclosed only from < Lee Mangi (李晩耆)'s Sigwon (試卷)(Minsok 71745)>, but this appears to be one of several processing methods to treat the paper during the Joseon Dynasty. We hope that more similar Sigwons will be discovered in the future and that extensive research on processing methods will be conducted.