• Title/Summary/Keyword: Electron emission

Search Result 2,167, Processing Time 0.028 seconds

Enhanced electron mobility of strained silicon channel layer in field emission transistor

  • Gang, Yeong-Ho
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.285-286
    • /
    • 2013
  • 이번 연구에서는 제일원리 계산을 통해 실리콘의 전자구조를 분석하였다. 특히 strain이 걸렸을 때에 실리콘의 전자이동도는 전자구조의 변화와 밀접하게 관련이 있음을 밝혔다. Strain이 걸린 경우와 그렇지 않은 경우에 대한 conduction band의 effective한 유효질량 계산을 하였고 이를 통해 tensile strain이 걸린 경우 전자의 이동도가 증가하는 것을 보였다.

  • PDF

Teliospore mucilage of Puccinia miscanthi revealed through the axial imaging of secondary electrons

  • Ki Woo Kim
    • Applied Microscopy
    • /
    • v.51
    • /
    • pp.15.1-15.2
    • /
    • 2021
  • Puccinia miscanthi teliospores were observed on the leaf surface of Miscanthus sinensis using a field emission scanning electron microscope. Details of teliospore mucilage could be visualized through the axial imaging of secondary electrons for a better understanding of pathogen behavior in rust diseases.

Surface structure modification of vertically-aligned carbon nanotubes and their characterization of field emission property

  • adil, Hawsawi;Jeong, Gu-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.159-159
    • /
    • 2016
  • Vertically-aligned carbon nanotubes (VCNT) have attracted much attention due to their unique structural, mechanical and electronic properties, and possess many advantages for a wide range of multifunctional applications such as field emission displays, heat dissipation and potential energy conversion devices. Surface modification of the VCNT plays a fundamental role to meet specific demands for the applications and control their surface property. Recent studies have been focused on the improvement of the electron emission property and the structural modification of CNTs to enable the mass fabrication, since the VCNT considered as an ideal candidate for various field emission applications such as lamps and flat panel display devices, X-ray tubes, vacuum gauges, and microwave amplifiers. Here, we investigate the effect of surface morphology of the VCNT by water vapor exposure and coating materials on field emission property. VCNT with various height were prepared by thermal chemical vapor deposition: short-length around $200{\mu}m$, medium-length around $500{\mu}m$, and long-length around 1 mm. The surface morphology is modified by water vapor exposure by adjusting exposure time and temperature with ranges from 2 to 10 min and from 60 to 120oC, respectively. Thin films of SiO2 and W are coated on the structure-modified VCNT to confirm the effect of coated materials on field emission properties. As a result, the surface morphology of VCNT dramatically changes with increasing temperature and exposure time. Especially, the shorter VCNT change their surface morphology most rapidly. The difference of field emission property depending on the coating materials is discussed from the point of work function and field concentration factor based on Fowler-Nordheim tunneling.

  • PDF

Electron Injection Mechanisms Varied by Conjugated Polyelectrolyte Electron Transporting Layers in Polymer Light-Emitting Diodes (고분자 발광다이오드에서 공액고분자 전해질 전자수송층에 의해 변화되는 전자주입 메카니즘)

  • Um, Seung-Soo;Park, Ju-Hyun
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.519-524
    • /
    • 2012
  • Capacitance measurements of the polymer light-emitting diodes (PLEDs) with conjugated polyelectrolyte (CPE) electron transporting layers (ETLs) provide important information of device physics for understanding the function of CPEs as ETLs, together with current density-voltage-luminescence measurements. We investigated the counterion-dependent capacitance behaviors that present a highly negative or positive capacitance at the low frequency, and suggested different carrier injection mechanisms. Capacitance model study reveals that the electron injection mechanism can be described either by the dipole alignment scheme or by electronic charge carrier accumulation at the cathode/ETL/emission layer interfaces.

Tailoring the Excited-State Intramolecular Proton Transfer (ESIPT) Fluorescence of 2-(2'-Hydroxyphenyl)benzoxazole Derivatives

  • Seo, Jang-Won;Kim, Se-Hoon;Park, Sang-Hyuk;Park, Soo-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1706-1710
    • /
    • 2005
  • The excited-state intramolecular proton transfer (ESIPT) fluorescence in the 2-(2'-hydroxyphenyl)benzoxazole (HBO) derivatives with different electron donor and acceptor substituents was studied by spectroscopic and theoretical methods. Changes in the electronic transition, energy levels, and orbital diagrams of HBO analogues were investigated by the semi-empirical molecular orbital calculation and were correlated with the experimental spectral position of ESIPT keto emission. It was found that the presence of substituents, regardless of their nature, resulted in the red-shifted absorption relative to HBO. However, the spectral change of the ESIPT fluorescence was differently affected by the nature of substituent: hypsochromic shift with electron donor and bathochromic shift with electron acceptor.

Controller Design for Electron Beam Manufacturing System (전자빔 가공기의 제어기 구성)

  • Lim, S.J.;Kang J.H.;Lee C.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1862-1865
    • /
    • 2005
  • We have a plan to design a controller for electron beam manufacturing system. At first, we designed a controller for SEM. The controller consists of five parts (power source, beam controller, scanning controller, optic controller and main controller). Beam controller supplies pulse wave for generating high voltage and can monitor the status of high voltage instrument through emission current. Optic controller controls focus, spot size and image shift. Main controller transmits variables from operating program to each part and monitors the status of peripheral device.

  • PDF

Investigation of a New Red-Emitting, Eu3+-Activated MgAl2O4 Phosphor

  • Singh, Vijay;Haque, Masuqul;Kim, Dong-Kuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2477-2480
    • /
    • 2007
  • MgAl2O4:Eu3+ red-light emitting powder phosphor was prepared at temperature as low as 500 oC within a few minutes by using the combustion route. The prepared powder was characterized by X-ray diffraction, scanning electron microscopy and Fourier-transform infrared spectrometry. The luminescence of Eu3+-activated MgAl2O4 shows a strong red emission dominant peak around 611 nm, which can be attributed to the 5D0-7F2 transition of Eu3+ ions from the synthesized phosphor particles under excitation (394 nm). Electron paramagnetic resonance (EPR) measurements at the X-band showed that no signal could be attributed to Eu2+ ions in MgAl2O4.