• Title/Summary/Keyword: Electron emission

Search Result 2,167, Processing Time 0.028 seconds

Adsorption of residual gases on carbon nanotubes and their field emission properties

  • Lee, Han-Sung;Jang, Eun-Soo;Goak, Jeung-Choon;Kim, Jin-Hee;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.51-51
    • /
    • 2008
  • Carbon nanotubes (CNTs) have long been reported as an ideal material due to their excellent electrical conductivity and chemical and mechanical stability as well as their high aspect ratios for field emission devices. CNT emitters made by screen printing the organic binder-based CNT paste may act as a source to release gases inside a vacuum panel. These residual gases may cause a catastrophic damage by electrical arcing or ion bombardment to the vacuum microelectronic devices and may change their physical or electrical properties by adsorbing on the CNT emitter surface. In this study, we analyzed the composition of residual gases inside the vacuum-sealed panel by residual gas analyzer (RGA), investigating the effects of individual gases of different kinds at several pressures on the field emission characteristics of CNT emitters. The residual gases included $H_2$, CO, $CO_2$, $N_2$, $CH_4$, $H_2O$, $C_2H_6$, and Ar. Effect of residual gases on the field emission was studied by observing the variation of the pulse voltages with the duty ratio of3.3% to keep the constant emission current of $28{\mu}A$. Each gas species was introduced to a vacuum chamber up to three different pressures ($5\times10^{-7}$, $5\times10^{-6}$, and $5\times10^{-5}$ torr) each for 1 h while electron emission was continued. The three different pressure regions were separated by keeping a high vacuum of $\sim10^{-8}$ torr for a 1 h. The emission was terminated 6 h after the third gas exposure was completed. Field emission characteristics under residual gases will be discussed in terms of their adsorption and desorption on the surface of CNTs and the resultant change of work function.

  • PDF

Investigation on field emission properties of diamond-like carbon thin film by variation of laser processing parameters (레이저 공정변수 변화에 따른 다이아몬드상 카본박막의 전계방출 특성분석)

  • Shim, Kyung-Suk;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1511-1513
    • /
    • 1999
  • In order to investigate the properties of diamond-like carbon(DLC) thin films depending on the deposition parameters, DLC thin films were systematically fabricated by pulsed laser deposition (PLD), DLC thin films have been shown advantageous field emission properties due to a negative electron affinity (NEA) and a low work function. At the atomic level. DLC is referred to the group of carbon materials with strong chemical bonding composition of $sp^2$ and $sp^3$ arrangements of atoms incorporated with an amorphous structure. The experiment was performed at substrate temperature in the range of room temperature to $600^{\circ}C$. The laser energy densiy was used to be in the range of $6J/cm^2$ to $20J/cm^2$, SEM, Raman, PL, XPS and field emission characteristics were used to investigate the DLC thin films.

  • PDF

Characterizing the damage mechanisms in mode II delamination in glass/epoxy composite using acoustic emission

  • Dastjerdi, Parinaz Belalpour;Ahmadi, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.67 no.5
    • /
    • pp.545-553
    • /
    • 2018
  • Mode II delamination propagation is an important damage mode in laminated composites and this paper aims to investigate the behavior of this damage in laminated composite materials using acoustic emission (AE) technique. Three different lay-ups of glass/epoxy composites were subjected to mode II delamination propagation and generated AE signals were recorded. In order to investigate the propagation of delamination behavior of these specimens, AE signals were analyzed using Wavelet Packet Transforms (WPT) and Fast Fourier Transform (FFT). In addition, conventional AE analyses were used to enhance understanding of the propagation of delamination damage. The results indicate that different fracture mechanisms were the main cause of the AE signals. The dominant mechanisms in all the specimens were matrix cracking, fiber/matrix debonding and fiber breakage, with varying percentage of the damage mechanisms for each lay-up. Scanning Electron Microscopy (SEM) observations were in accordance to the AE results.

The properties of ZnO/MgO films prepared by ultrasonic spray pyrolysis (초음파분무법으로 제조한 ZnO/MgO막의 특성)

  • Choi, Mu-Hee;Ma, Tae-Young
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.362-367
    • /
    • 2005
  • ZnO films were deposited on MgO substrates (ZnO/MgO) by ultrasonic spray pyrolysis. Substrate temperature varied from $250^{\circ}C$ to $350^{\circ}C$. The crystallographic properties and surface morphologies of the ZnO/MgO films were studied by X-ray diffraction and scanning electron microscopy. The properties of photoluminescence (PL) for the films were investigated by dependence of PL spectra on the substrate temperature and the annealing temperature. The ZnO/MgO films prepared at $350^{\circ}C$ showed the strongest Ultraviolet light emission peak at 18 K and 300 K among the films in this study. The annealing process increases the visible light emission, which is due to the increased oxygen vacancies.

Synthesis of well-aligned thin multiwalled carbon nanotubes on the silicon substrate and their field emission properties

  • Yuan, Huajun;Shin, Dong-Hoon;Kim, Bawl;Lee, Cheol-Jin
    • Carbon letters
    • /
    • v.12 no.4
    • /
    • pp.218-222
    • /
    • 2011
  • Well-aligned multi-walled carbon nanotubes (MWCNTs) were successfully synthesized by catalytic chemical vapor deposition using a hydrogen sulfide ($H_2S$) additive onto Al/Fe thin film deposited on Si wafers. Transmission electron microscopy images indicated that the as-grown carbon products were thin MWCNTs with small outer diameters of less than 10 nm. $H_2S$ plays a key role in synthesizing thin MWCNTs with a large inside hollow core. The well-aligned thin MWCNTs showed a low turn-on voltage of about 1.1 V/${\mu}m$ at a current density of 0.1 ${\mu}A/cm^2$ and a high emission current of about 1.0 mA/$cm^2$ at a bias field of 2.3 V/${\mu}m$. We suggest a possible growth mechanism for the well-aligned thin MWCNTs with a large inside hollow core.

The dual emitter structure for field emission light source (전계방출광원용 듀얼 에미터 특성 연구)

  • Kim, Kwang-Bok;Lee, Sun-Hee;Park, Ho-Seop;Yang, Dong-Wook;Kim, Dae-Jun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.151-154
    • /
    • 2008
  • The field emission lamps have the advantages to their cold cathode-characteristic and the eco-friendly, We realized that the dual emitter system showed very simple structure which gate and cathode electrodes are formed on the same glass surface. In this paper, we reported the properties of dual emitters depended on variation of gate width and spacing for optimum panel structure. In combination of dual emitter structure and bi-polar driving, electron beam spreads more than normal gate structure or diode structure, and emission uniformity increased in dual emitter structure at 5"-diagonal.

  • PDF

Annealing effects of ZnO:Er films on UV emission (ZnO:Er막의 UV 발광에 미치는 열처리 효과)

  • Choi, Mu-Hee;Ma, Tae-Young
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.316-321
    • /
    • 2009
  • Er-doped ZnO(ZnO:Er) films were deposited onto MgO wafers by ultrasonic spray pyrolysis at 550 $^{\circ}C$ varying the concentration of Er in the deposition source from 0.5 wt% to 3.0 wt%. Annealing of the films in a vacuum was carried out to increase the intensity of ultraviolet(UV) emission from the films. The annealing temperature was between 600$^{\circ}C$ and 800$^{\circ}C$. The crystallographic properties and surface morphology of the films were investigated by X-ray diffraction(XRD)and scanning electron microscope(SEM), respectively. The properties of photoluminescence(PL) for the films were investigated by the dependence of PL spectra on the annealing temperature. X-ray photoelectron spectroscopy(XPS) was conducted to find the composition change in the films by the annealing.

Structural and Opical Properties of ZnO Thin Films with Different Temperature of Sol-gel Solution (Sol-gel 용액의 온도변화에 따른 ZnO 박막의 구조적, 광학적 특성)

  • Park, Hyeong-Gil;Nam, Gi-Ung;Yun, Hyeon-Sik;Kim, So-A-Ram;Im, Jae-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.137-138
    • /
    • 2012
  • ZnO 박막을 Sol-gel용액을 이용한 스핀코팅 방법으로 석영기판 위에 성장하였고 Sol-gel 용액의 온도 변화에 따른 구조적, 광학적 특성을 분석하였다. ZnO 박막의 구조적, 광학적 특성을 조사하기 위해 field-emission scanning electron microscopy, X-ray diffraction (XRD), photoluminescence (PL), 그리고 ultraviolet-visible (UV) spectroscopy을 사용하였다. PL 분석에서 ZnO 박막은 orange 계열의 발광을 하였으며, PL spectra는 3.3 eV 부근의 near-band edge emission (NBE) 피크와 2.0 eV 부근의 deep-level emission (DLE) 피크로 이루어져있다. 모든 sol-gel 용액 온도에서, DLE 피크가 NBE 피크보다 더 우세하고 이 DLE 피크는 sol-gel 용액의 온도가 증가함에 따라 점점 증가하다가 감소하는 것을 알 수 있다. 이런 DLE 피크는 산소 공공, 아연 공공, 침입형 산소, 침입형 아연 등과 같은 결함에 의한 것이며, ZnO 박막은 sol-gel 용액의 온도에 따라 결함의 특성이 변화하였다.

  • PDF

Luminescence Behavior of $YNbO_4$ and $YNbO_4:Bi$

  • Chang, Hyun-Ju;Lee, Seung-Kwon;Han, Cheong-Hwa;Park, Hee-Dong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.35-36
    • /
    • 2000
  • The luminescence behaviors of Yttrium niobate and Bi doped Yttrium niobate were investigated under UV and low voltage electron excitations and interpreted with the first-principle calculations. In the UV excitation and emission spectra of $YNbO_4$ and $YNbO_4:Bi$, we were able to separate host contribution and Bi contribution and found that the shift in emission peak to longer wavelength is mainly due to Bi contribution. Using density functional theory, the cluster calculations were carried out for both $YNbO_4$ and $YNbO_4:Bi$. From the calculated density of states, we were also able to explain the charge transfer gap in the host and the effect of Bi in the excitation and emission spectra theoretically.

  • PDF

Study on Argon Metastable and 4p State Neutral Atoms in Magnetized ICP and Helicon Plasmas Measured by Laser Induced Fluorescence and Plasma Emission

  • Seo, Byeong-Hun;Yu, Sin-Jae;Kim, Jeong-Hyeong;Seong, Dae-Jin;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.579-579
    • /
    • 2013
  • We study on Argon metastable and 4p state neutral atom density in magnetized ICP Helicon plasmas by Laser Induced Fluorescence and plasma emission. The results show that metastable density is too low at the center of chamber due to significant neutral depletion. Otherwise, 4p state is high at the center of chamber because electron density is very high. Power and pressure dependence of metastable and 4p state neutral atom have been spatially measured in the radial direction of cylindrical chamber.

  • PDF