• Title/Summary/Keyword: Electron diffusion

Search Result 629, Processing Time 0.034 seconds

Characterization of Bacillus thuringiensis subsp. tohokuensis CAB167 Isolate against Mosquito Larva (모기유충에 활성 있는 Bacillus thuringiensis subsp. tohokuensis CAB167 균주의 특성)

  • Kil, Mi-Ra;Kim, Da-A;Paek, Seung-Kyoung;Kim, Jin-Su;Choi, Su-Yeon;Jin, Da-Yong;Youn, Young-Nam;Hwang, In-Chon;Ohba, Michio;Yu, Yong-Man
    • Korean journal of applied entomology
    • /
    • v.47 no.4
    • /
    • pp.457-465
    • /
    • 2008
  • Eight Bacillus thuringiensis strains activated against mosquito larva were compared their characterization. Spherical-shaped parasporal inclusion of B. thuringiensis subsp. tohokuensis CAB167 was observed by phase-contrast microscopy and scanning electron microscopy. $LC_{50}$ values of B. thuringiensis subsp. tohokuensis CAB167 against Culex pipiens molestus, Culex pipiens pallens, and Aedes aegyti were 173, 190 and 580 ng/ml, respectively. B. thuringiensis subsp. tohokuensis CAB167 had a parasporal inclusion containing 4 major protein components, for example, 135, 80, 49 and 28-kDa by SDS-PAGE. Otherwise, after trypsin digestion of parasporal inclusion, SDS-PAGE was showed new protease-resistant peptides at 72 and 63-kDa. Activated toxins of isolated CAB167 were different from other reference strains on a serological by immuno-diffusion test.

Novel synthesis of nanocrystalline thin films by design and control of deposition energy and plasma

  • Han, Jeon G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.77-77
    • /
    • 2016
  • Thin films synthesized by plasma processes have been widely applied in a variety of industrial sectors. The structure control of thin film is one of prime factor in most of these applications. It is well known that the structure of this film is closely associated with plasma parameters and species of plasma which are electrons, ions, radical and neutrals in plasma processes. However the precise control of structure by plasma process is still limited due to inherent complexity, reproducibility and control problems in practical implementation of plasma processing. Therefore the study on the fundamental physical properties that govern the plasmas becomes more crucial for molecular scale control of film structure and corresponding properties for new generation nano scale film materials development and application. The thin films are formed through nucleation and growth stages during thin film depostion. Such stages involve adsorption, surface diffusion, chemical binding and other atomic processes at surfaces. This requires identification, determination and quantification of the surface activity of the species in the plasma. Specifically, the ions and neutrals have kinetic energies ranging from ~ thermal up to tens of eV, which are generated by electron impact of the polyatomic precursor, gas phase reaction, and interactions with the substrate and reactor walls. The present work highlights these aspects for the controlled and low-temperature plasma enhanced chemical vapour disposition (PECVD) of Si-based films like crystalline Si (c-Si), Si-quantum dot, and sputtered crystalline C by the design and control of radicals, plasmas and the deposition energy. Additionally, there is growing demand on the low-temperature deposition process with low hydrogen content by PECVD. The deposition temperature can be reduced significantly by utilizing alternative plasma concepts to lower the reaction activation energy. Evolution in this area continues and has recently produced solutions by increasing the plasma excitation frequency from radio frequency to ultra high frequency (UHF) and in the range of microwave. In this sense, the necessity of dedicated experimental studies, diagnostics and computer modelling of process plasmas to quantify the effect of the unique chemistry and structure of the growing film by radical and plasma control is realized. Different low-temperature PECVD processes using RF, UHF, and RF/UHF hybrid plasmas along with magnetron sputtering plasmas are investigated using numerous diagnostics and film analysis tools. The broad outlook of this work also outlines some of the 'Grand Scientific Challenges' to which significant contributions from plasma nanoscience-related research can be foreseen.

  • PDF

Irradiation enduced In-plane magnetization in Fe/MgO/Fe/Co multilayers

  • Singh, Jitendra Pal;Lim, Weon Cheol;Song, Jonghan;Kim, Jaeyeoul;Asokan, K.;Chae, Keun Hwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.188.1-188.1
    • /
    • 2015
  • For present investigation Fe/MgO/Fe/Co multilayer stack is grown on Si substrate using e-beam evaporation in ultrahigh vacuum. This stack is irradiated perpendicularly by 120 MeV $Ag^{8+}$ at different fluences ranging from $1{\times}10^{11}$ to $1{\times}10^{13}ions/cm^2$ in high vacuum using 15UD Pelletron Accelerator at Inter University Accelerator Centre, New Delhi. Magnetic measurements carried out on pre and post irradiated stacks show significant changes in the shape of perpendicular hysteresis which is relevant with previous observation of re-orientation of magnetic moment along the direction of ion trajectory. However increase in plane squareness may be due to the modification of interface structure of stacks. X-ray reflectivity measurements show onset of interface roughness and interface mixing. X-ray diffraction measurements carried out using synchrotron radiation shows amorphous nature of MgO and Co layer in the stack. Peak corresponding body centered Fe [JCPDS-06-0696] is observed in X-ray diffraction pattern of pre and post irradiated stacks. Peak broadening shows granular nature of Fe layer. Estimated crystallite size is $22{\pm}1nm$ for pre-irradiated stack. Crystallite size first increases with irradiation then decreases. Structural quality of these stacks was further studied using transmission electron microscopic measurements. Thickness from these measurements are 54, 36, 23, 58 and 3 nm respectively for MgO, Fe, MgO, Fe+Co and Au layers in the stack. These measurements envisage poor crystallinity of different layers. Interfaces are not clear which indicate mixing at interface. With increase fluence mixing and diffusion was increased in the stack. X-ray absorption spectroscopic measurements carried out on these stacks show changes of Fe valence state after irradiation along with change of O(2p)-metal (3d) hybridized state. Valence state change predicts oxide formation at interface which causes enhanced in-plane magnetization.

  • PDF

Al2O3 High Dense Single Layer Gas Barrier by Neutral Beam Assisted Sputtering (NBAS) Process

  • Jang, Yun-Seong;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.157-157
    • /
    • 2015
  • Recently, the growing interest in organic microelectronic devices including OLEDs has led to an increasing amount of research into their many potential applications in the area of flexible electronic devices based on plastic substrates. However, these organic devices require a gas barrier coating to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency OLEDs require an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}g/m^2day$. The Key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required ($1{\times}10^{-6}g/m^2day$) is the suppression of defect sites and gas diffusion pathways between grain boundaries. In this study NBAS process was introduced to deposit enhanced film density single gas barrier layer with a low WVTR. Fig. 1. shows a schematic illustration of the NBAS apparatus. The NBAS process was used for the $Al_2O_3$ nano-crystal structure films deposition, as shown in Fig. 1. The NBAS system is based on the conventional RF magnetron sputtering and it has the electron cyclotron resonance (ECR) plasma source and metal reflector. $Ar^+$ ion in the ECR plasma can be accelerated into the plasma sheath between the plasma and metal reflector, which are then neutralized mainly by Auger neutralization. The neutral beam energy is controlled by the metal reflector bias. The controllable neutral beam energy can continuously change crystalline structures from an amorphous phase to nanocrystal phase of various grain sizes. The $Al_2O_3$ films can be high film density by controllable Auger neutral beam energy. we developed $Al_2O_3$ high dense barrier layer using NBAS process. We can verified that NBAS process effect can lead to formation of high density nano-crystal structure barrier layer. As a result, Fig. 2. shows that the NBAS processed $Al_2O_3$ high dense barrier layer shows excellent WVTR property as a under $2{\times}10^{-5}g/m^2day$ in the single barrier layer of 100nm thickness. Therefore, the NBAS processed $Al_2O_3$ high dense barrier layer is very suitable in the high efficiency OLED application.

  • PDF

Intermetallic Compounds Growth in the Interface between Sn-based Solders and Pt During Aging (시효처리에 따른 Cu를 포함하는 Sn계 무연솔더와 백금층 사이의 금속간화합물 성장)

  • Kim Tae-Hyun;Kim Young-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.3 s.32
    • /
    • pp.23-30
    • /
    • 2004
  • Interfacial reaction of Pb-free $Sn0.7wt{\%}Cu$ and $Sn3.8wt{\%}Ag0.7wt{\%}Cu$ solders and Pt during aging has been investigated. After the $Sn3.8wt{\%}Ag0.7wt{\%}Cu/Pt$ specimens were reflowed at $250^{\circ}C$ for 30s and the $Sn0.7wt{\%}Cu/Pt$ specimens were reflowed at $260^{\circ}C$, the specimens were aged at $125^{\circ}C,\;150^{\circ}C$ and $170^{\circ}C$ for 25-121 hours. The intermetallic thitkness and morphology change during aging were characterized using SEM, EDS and XRD. $PtSn_4$ and $PtSn_2$ were observed in the solder/pt interface and the intermetallic formation was governed by diffusion. The activation energy of intermetallic formation was 145.3 kJ/mol for$Sn3.8wt{\%}Ag0.7wt{\%}Cu/Pt$ specimens for $Sn0.7wt{\%}Cu/Pt$ specimens from the measurement of the intermetallic thickness with aging temperature and time.

  • PDF

Synthesis and Electrochemical Properties of Li[Fe0.9Mn0.1]PO4 Nanofibers as Cathode Material for Lithium Ion Battery by Electrospinning Method (전기방사를 이용한 리튬 이차전지용 양극활물질 Li[Fe0.9Mn0.1]PO4 나노 섬유의 합성 및 전기화학적 특성)

  • Kim, Cheong;Kang, Chung-Soo;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.2
    • /
    • pp.95-100
    • /
    • 2012
  • $LiFePO_4$ is an attractive cathode material due to its low cost, good cyclability and safety. But it has low ionic conductivity and working voltage impose a limitation on its application for commercial products. In order to solve these problems, the iron($Fe^{2+}$)site in $LiFePO_4$ can be substituted with other transition metal ions such as $Mn^{2+}$ in pursuance of increase the working voltage. Also, reducing the size of electrode materials to nanometer scale can improve the power density because of a larger electrode-electrolyte contact area and shorter diffusion lengths for Li ions in crystals. Therefore, we chose electrospinning as a general method to prepare $Li[Fe_{0.9}Mn_{0.1}]PO_4$ to increase the surface area. Also, there have been very a few reports on the synthesis of cathode materials by electrospinning method for Lithium ion batteries. The morphology and nanostructure of the obtained $Li[Fe_{0.9}Mn_{0.1}]PO_4$ nanofibers were characterized using scanning electron microscopy(SEM). X-ray diffraction(XRD) measurements were also carried out in order to determine the structure of $Li[Fe_{0.9}Mn_{0.1}]PO_4$ nanofibers. Electrochemical properties of $Li[Fe_{0.9}Mn_{0.1}]PO_4$ were investigated with charge/discharge measurements, electrochemical impedance spectroscopy measurements(EIS).

Antimicrobial Effect of Extract of Glycyrrhiza uralensis on Methicillin-Resistant Staphylococcus aureus (감초 추출물이 항생제 내성균주의 항균활성에 미치는 영향)

  • Lee, Ji-Won;Ji, Young-Ju;Yu, Mi-Hee;Im, Hyo-Gwon;HwangBo, Mi-Hyang;Lee, In-Seon
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.456-464
    • /
    • 2005
  • Antimicrobial drug-resistance is natural response to antimicrobial stress based on selection, which weakens chemotherapy effect. Introduction of large numbers of chemotherapeutic agents to clinical practice has generated strains of microorganisms that survive and multiply in vivo with high-drug concentrations. Methicillin-resistant Staphylococcus aureus (MRSA), bacteria found in normal daily life, can be easily ingested through milk vegetables, and meats, etc. MRSA emerged in many port of the world, increasing complex clinical problems. Therefore, new agents are needed to treat MRSA. Glycyrrhiza uralensis was extracted using 80% MeOH to investigate its antimicrobial activity against MRSA stains KCCM 11812, 40510, and 40512 through bacterial measurement, disc diffusion, and O.D. methods, MIC values, MRSA gene expression investigation, and scanning electron microscope observation. Results revealed MecA, Mecl, MecRI, and FemA were the most highly manifested MRSA genes. Methanolic extract of G. uralensis significantly inhibited MRSA and thus could be used in development of antibacteria.

Monolithic 3D-IC 구현을 위한 In-Sn을 이용한 Low Temperature Eutectic Bonding 기술

  • Sim, Jae-U;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.338-338
    • /
    • 2013
  • Monolithic three-dimensional integrated circuits (3D-ICs) 구현 시 bonding 과정에서 발생되는 aluminum (Al) 이나 copper (Cu) 등의 interconnect metal의 확산, 열적 스트레스, 결함의 발생, 도펀트 재분포와 같은 문제들을 피하기 위해서는 저온 공정이 필수적이다. 지금까지는 polymer 기반의 bonding이나 Cu/Cu와 같은 metal 기반의 bonding 등과 같은 저온 bonding 방법이 연구되어 왔다. 그러나 이와 같은 bonding 공정들은 공정 시 void와 같은 문제가 발생하거나 공정을 위한 특수한 장비가 필수적이다. 반면, 두 물질의 합금을 이용해 녹는점을 낮추는 eutectic bonding 공정은 저온에서 공정이 가능할 뿐만 아니라 void의 발생 없이 강한 bonding 강도를 얻을 수 있다. Aluminum-germanium (Al-Ge) 및 aluminum-indium (Al-In) 등의 조합이 eutectic bonding에 이용되어 각각 $424^{\circ}C$$454^{\circ}C$의 저온 공정을 성취하였으나 여전히 $400^{\circ}C$이상의 eutectic 온도로 인해 3D-ICs의 구현 시에는 적용이 불가능하다. 이러한 metal 조합들에 비해 indium (In)과 tin (Sn)은 각각 $156^{\circ}C$$232^{\circ}C$로 굉장히 낮은 녹는점을 가지고 있기 때문에 In-Sn 조합은 약 $120^{\circ}C$ 정도의 상당히 낮은eutectic 온도를 갖는다. 따라서 본 연구팀은 In-Sn 조합을 이용하여 $200^{\circ}C$ 이하에서monolithic 3D-IC 구현 시 사용될 eutectic bonding 공정을 개발하였다. 100 nm SiO2가 증착된 Si wafer 위에 50 nm Ti 및 410 nm In을 증착하고, 다른Si wafer 위에 50 nm Ti 및 500 nm Sn을 증착하였다. Ti는 adhesion 향상 및 diffusion barrier 역할을 위해 증착되었다. In과 Sn의 두께는 binary phase diagram을 통해 In-Sn의 eutectic 온도인 $120^{\circ}C$ 지점의 조성 비율인 48 at% Sn과 52 at% In에 해당되는 410 nm (In) 그리고 500 nm (Sn)로 결정되었다. Bonding은 Tbon-100 장비를 이용하여 $140^{\circ}C$, $170^{\circ}C$ 그리고 $200^{\circ}C$에서 2,000 N의 압력으로 진행되었으며 각각의 샘플들은 scanning electron microscope (SEM)을 통해 확인된 후, 접합 강도 테스트를 진행하였다. 추가로 bonding 층의 In 및 Sn 분포를 확인하기 위하여 Si wafer 위에 Ti/In/Sn/Ti를 차례로 증착시킨 뒤 bonding 조건과 같은 온도에서 열처리하고secondary ion mass spectrometry (SIMS) profile 분석을 시행하였다. 결론적으로 본 연구를 통하여 충분히 높은 접합 강도를 갖는 In-Sn eutectic bonding 공정을 $140^{\circ}C$의 낮은 공정온도에서 성공적으로 개발하였다.

  • PDF

Schottky Contact Application을 위한 Yb Germanides 형성 및 특성에 관한 연구

  • Na, Se-Gwon;Gang, Jun-Gu;Choe, Ju-Yun;Lee, Seok-Hui;Kim, Hyeong-Seop;Lee, Hu-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.399-399
    • /
    • 2013
  • Metal silicides는 Si 기반의microelectronic devices의 interconnect와 contact 물질 등에 사용하기 위하여 그 형성 mechanism과 전기적 특성에 대한 연구가 많이 이루어지고 있다. 이 중 Rare-earth(RE) silicides는 저온에서 silicides를 형성하고, n-type Si과 낮은 Schottky Barrier contact (~0.3 eV)을 이룬다. 또한 낮은 resistivity와 Si과의 작은 lattice mismatch, 그리고 epitaxial growth의 가능성, 높은 thermal stability 등의 장점을 갖고 있다. RE silicides 중 ytterbium silicide는 가장 낮은 electric work function을 갖고 있어 n-channel schottky barrier MOSFETs의 source/drain으로 주목받고 있다. 또한 Silicon 기반의 CMOSFETs의 성능 향상 한계로 인하여 germanium 기반의 소자에 대한 연구가 이루어져 왔다. Ge 기반 FETs 제작을 위해서는 낮은 source/drain series/contact resistances의 contact을 형성해야 한다. 본 연구에서는 저접촉 저항 contact material로서 ytterbium germanide의 가능성에 대해 고찰하고자 하였다. HRTEM과 EDS를 이용하여 ytterbium germanide의 미세구조 분석과 면저항 및 Schottky Barrier Heights 등의 전기적 특성 분석을 진행하였다. Low doped n-type Ge (100) wafer를 1%의 hydrofluoric (HF) acid solution에 세정하여 native oxide layer를 제거하고, 고진공에서 RF sputtering 법을 이용하여 ytterbium 30 nm를 먼저 증착하고, 그 위에 ytterbium의 oxidation을 방지하기 위한 capping layer로 100 nm 두께의 TiN을 증착하였다. 증착 후, rapid thermal anneal (RTA)을 이용하여 N2 분위기에서 $300{\sim}700^{\circ}C$에서 각각 1분간 열처리하여 ytterbium germanides를 형성하였다. Ytterbium germanide의 미세구조 분석은 transmission electron microscopy (JEM-2100F)을 이용하였다. 면 저항 측정을 위해 sulfuric acid와 hydrogen peroxide solution (H2SO4:H2O2=6:1)에서 strip을 진행하여 TiN과 unreacted Yb을 제거하였고, 4-point probe를 통하여 측정하였다. Yb germanides의 면저항은 열처리 온도 증가에 따라 감소하다 증가하는 경향을 보이고, $400{\sim}500^{\circ}C$에서 가장 작은 면저항을 나타내었다. HRTEM 분석 결과, deposition 과정에서 Yb과 Si의 intermixing이 일어나 amorphous layer가 존재하였고, 열처리 온도가 증가하면서 diffusion이 더 활발히 일어나 amorphous layer의 두께가 증가하였다. $350^{\circ}C$ 열처리 샘플에서 germanide/Ge interface에서 epitaxial 구조의 crystalline Yb germanide가 형성되었고, EDS 측정 및 diffraction pattern을 통하여 안정상인 YbGe2-X phase임을 확인하였다. 이러한 epitaxial growth는 면저항의 감소를 가져왔으며, 열처리 온도가 증가하면서 epitaxial layer가 증가하다가 고온에서 polycrystalline 구조의 Yb germanide가 형성되어 면저항의 증가를 가져왔다. Schottky Barrier Heights 측정 결과 또한 면저항 경향과 동일하게 열처리 증가에 따라 감소하다가 고온에서 다시 증가하였다.

  • PDF

Synthesis and quantative structure-activity relationships on the antifungal activity of 3-phenylisoxazol and 3-phenyl-2,5-dihydro-5-isoxazolone derivatives (3-phenylisoxazole 및 3-phenyl-2,5-dihydroisoxazol-5-one 유도체의 합성과 살균활성에 관한 구조-활성관계)

  • Sung, Nack-Do;Yu, Seong-Jae;Lee, Hee-Chul
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.4
    • /
    • pp.20-26
    • /
    • 2001
  • A series of new 2-benzoyl-3-phenyl-2,5-dihydroisoxazol-5-one, (A) and 3-phenyl-5-phenylcarbonyl-oxyisoxazole, (B) derivatives as substrates were synthesized and their quantitative structure-activity relationships (QSAR) analyses between the antifungal activities ($pI_{50}$) and physicochemical parameters of substituents onl the benzoyl group against resistant (RPC:95CC7303) and sensitive (SPC:95CC7105) Phytophthora blight (Phytophthora capsici,) were studied. The synthetic yield (%) and antifungal activities of (A) were higher than (B) and selectivities between the fungi were not showed. From the basis on the Hansch-Fujita analyses, the optimum width values ($(B_2)_{opt.}=ca.\;4.00{\AA}$) of the substituents on the benzoyl group were important factor in determining fungicidal activity against the two fungi. Influence of the substituents as electron withdrawing group on the fungicidal activity against RPC, but not for SPC. And tile bromo- and acetyl-substituents were contributed to higher antifungal activity against RPC and SPC from the results of Free-Wilson analyses.

  • PDF