• Title/Summary/Keyword: Electron concentration

Search Result 2,181, Processing Time 0.033 seconds

EFFECTS OF PHOSPHORIC ACID CONCENTRATION ON DEPTH OF ETCH AND SHEAR BOND STRENGTH OF ORTHODONTIC BRACKETS TO BOVINE ENAMEL (인산농도가 소의 법랑질에서 부식깊이와 브라켓 전단결합강도에 미치는 영향)

  • Kim, Soo-Cheol;Lee, Ki-Soo
    • The korean journal of orthodontics
    • /
    • v.25 no.3 s.50
    • /
    • pp.341-353
    • /
    • 1995
  • Previous study had shown the diversities in the propriety for optimal bond strength on the concentration of the etchant. The aim of present study in vitro was to evaluate and compare the shear bond strength of orthodontic brackets to enamel and to measure the depth of etch on the phosphoric acid concentrations. A hundred and seventy six extracted bovine lower centrals were ground to yield flat surfaces and etched by the concentration $0%,\;5%,\;10%,\;20%,\;30%,\;40%,\;50%,\;60%,\;70%,\;80%\;and\;85\%$ of phosphoric acid respectively during 60 seconds. The shear bond strength of orthodontic brackets, the depth of etch and surface roughness of the enamel were measured, and scanning electron microscopic observations on the etched enamel surfaces were carried out. The data obtained from the very experiments were processed and statistically analyzed and evaluated. The gradual increase in the depth of etch to enamel as the accretion of the concentration of the phosphoric acid upto $40-50\%$ and decline henceforth were manifested. The surface roughness showed no correlation with the depth of etch, yet moderate correlation with the shear bond strength of brackets. Scanning electron microscopic investigation revealed that morphological patterns of the etched enamel surfaces for $5\%\;to\;40\%$ of concentrations were even and homogenous, and those for $50\%$ as well as $60\%$ exhibited the overetched and unhomogenous. The shear bond strengths kom $10\%\;to\;60\%$ of concentration showed no statistically significant differences. It was suggested that the shear bond strengths at $5\%\;and\;70\%$ were sufficient to tolerate the force levels of the ordinary orthodontic treatment notwithstanding to be significantly lower than those from $10\%\;to\;60\%$ phosphoric acid solution.

  • PDF

Epitaxial Growth and Characterization of Zinc-blende CrAs/GaAs/MnAs/GaAs Multilayers

  • Wang W.H.;Manago T.;Akinaga H.
    • Journal of Magnetics
    • /
    • v.11 no.1
    • /
    • pp.1-4
    • /
    • 2006
  • We report on the growth, structural and transport properties of zinc-blende CrAs/GaAs/MnAs/GaAs multilayers on GaAs(001) substrates. Structural analyses using in-situ reflection high-energy electron diffraction and exsitu cross-sectional transmission electron microscopy confirmed the realization of a zinc-blende crystal structure. Room temperature Hall measurements reveal that the as-grown multilayer exhibits p-type conductivity with a very low resistivity of $0.052\;\omega{cm}$, a high carrier concentration of $6.2X10^{19}\;cm^{-3}$ and a Hall mobility of $1.8\;cm^2/Vs$. We also observed a clear decrease of the resistivity in samples after low temperature annealing.

Cathodoluminescence Properties of Novel $Mg_2SnO_4$:Mn Phosphor under Low-Voltage Electron Excitation

  • Kim, Kyung-Nam;Jung, Ha-Kyun;Park, Hee-Dong;Kim, Do-Jin
    • Journal of Information Display
    • /
    • v.2 no.3
    • /
    • pp.13-17
    • /
    • 2001
  • The manganese-doped magnesium tin oxide with spinel structure was selected as a green phosphor for FED application and was synthesized by the solid state reaction. Its luminescence properties were investigated under low-voltage electron excitation. The $Mg_2SnO_4$:Mn phosphor showed green emission with the spectrum centered at 500 nm due to energy transfer from $^4T_1$ to $^6A_1$ of $Mn^{2+}$ ion. Optimum Mn concentration was 0.6 mole % and the decay time was shorter than 10 ms.

  • PDF

A Dual Gate AlGaN/GaN High Electron Mobility Transistor with High Breakdown Voltages (높은 항복 전압 특성을 가지는 이중 게이트 AlGaN/GaN 고 전자 이동도 트랜지스터)

  • Ha Min-Woo;Lee Seung-Chul;Her Jin-Cherl;Seo Kwang-Seok;Han Min-Koo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.1
    • /
    • pp.18-22
    • /
    • 2005
  • We have proposed and fabricated a dual gate AlGaN/GaN high electron mobility transistor (HEMT), which exhibits the low leakage current and the high breakdown voltage for the high voltage switching applications. The additional gate between the main gate and the drain is specially designed in order to decrease the electric field concentration at the drain-side of the main gate. The leakage current of the proposed HEMT is decreased considerably and the breakdown voltage increases without sacrificing any other electric characteristics such as the transconductance and the drain current. The experimental results show that the breakdown voltage and the leakage current of proposed HEMT are 362 V and 75 nA while those of the conventional HEMT are 196 V and 428 nA, respectively.

Novel room temperature grown carbon based cathodes for field emission using diamond nano-particle seeding technique

  • Satyanarayana, B.S.;Hiraki, A.
    • Journal of Surface Science and Engineering
    • /
    • v.34 no.5
    • /
    • pp.448-454
    • /
    • 2001
  • Low field electron emission from novel carbon based cold cathodes is reported. The cathodes consisted of a layer of nanoseeded diamond and an over layer of nanocluster carbon films. The nanoseeded diamond was first coated on to thesubstrate. The nanocluster carbon films were then deposited on the nanocrystalline diamond coated substrates using the cathodic arc process at room temperature. The heterostructured microcathodes were observed to exhibit electron emission currents of 1 $\mu$A/cm$^2$ at fields as low as 1.5 to 2V/$\mu$m. The effect of the nanoseeded diamond size and concentration and the properties of different nanocluster carbon films on emission characteristics is presented.

  • PDF

Effect of Valence Electron Concentration on Elastic Properties of 4d Transition Metal Carbides MC (M = Y, Zr, Nb, and Rh)

  • Kang, Dae-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2171-2175
    • /
    • 2013
  • The electronic structure and elastic properties of the 4d transition metal carbides MC (M = Y, Zr, Nb, Rh) were studied by means of extended H$\ddot{u}$ckel tight-binding band electronic structure calculations. As the valence electron population of M increases, the bulk modulus of the MC compounds in the rocksalt structure does not increase monotonically. The dominant covalent bonding in these compounds is found to be M-C bonding, which mainly arises from the interaction between M 4d and C 2p orbitals. The bonding characteristics between M and C atoms affecting the variation of the bulk modulus can be understood on the basis of their electronic structure. The increasing bulk modulus from YC to NbC is associated with stronger interactions between M 4d and C 2p orbitals and the successive filling of M 4d-C 2p bonding states. The decreased bulk modulus for RhC is related to the partial occupation of Rh-C antibonding states.

Fabrication of nanoporous gold thin films on glass substrates for amperometric detection of aniline

  • Lee, Keon-U;Kim, Sang Hoon;Shin, Hyung-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.354.1-354.1
    • /
    • 2016
  • Nanoporous gold (NPG) is a very promising material in various fields such as sensor, actuator, and catalysis because of its high surface to volume ratio and conducting nature. In this study, we fabricated a NPG based amperometric sensor on a glass substrate by means of co-sputtering of Au and Si. During the sputtering process, we found the optimum conditions for heat treatment to reduce the residual stress and to improve adhesion between NPG films and the glass substrate. Subsequently, Si was selectively etched from Au-Si alloy by KOH solution, which forms nanoporous structures. Scanning electron microscopy (SEM) and auger electron spectroscopy (AES) were used to estimate the structure of NPG films and their composition. By employing appropriate heat treatments, we could make very stable NPG films. We tested the performance of NPG sensor with aniline molecules, which shows high sensitivity for sensing low concentration of aniline.

  • PDF

The Effect of Wall Thickness of ZnO Nanotubes on the Ethanol Gas Sensing Performance (산화아연 나노튜브의 벽 두께에 따른 에탄올 가스 검출특성)

  • Kang, Wooseung
    • Journal of Surface Science and Engineering
    • /
    • v.50 no.3
    • /
    • pp.225-229
    • /
    • 2017
  • ZnO nanotubes were synthesized to investigate the effect of wall thickness on the ethanol gas sensing performance. The wall thickness of the nanotubes was varied from approximately 20 to 60 nm. Transmission electron microscopy, X-ray diffraction and SAED (Selected Area Electron Beam Diffraction) analyses showed that the synthesized nanotubes were polycrystalline structured ZnO with the diameter of approximately 200-300nm. The ZnO nanotubes sensor with an optimum wall thickness of 51.8nm showed approximately 8 times higher response, compared to that with 21.14nm wall thick nanotubes, to the ethanol concentration of 500 ppm at the temperature of $300^{\circ}C$. The wall thickness of 51.8nm was found to be a little larger than 46nm, which was theoretically derived Debye length. Along with the study of the wall thickness effect on the performance of the sensors, the mechanisms of gas sensing of the polycrystalline ZnO nanotubes are also discussed.

Photoproduction of Hydrogen in Polyvinylalcohol-Iimmobilized Spinach Chloroplsats with Platinum Catalysts (Polyvinylalcohol에 고정한 시금치 엽록체와 백금 촉매를 이용한 광수소 발생)

  • 박인호
    • Journal of Plant Biology
    • /
    • v.36 no.4
    • /
    • pp.313-319
    • /
    • 1993
  • Photoproduction of hydrogen by free and polyvinylalcohol (PVA)-immobilized spinach chloroplasts was investigated. Immobilization of chloroplast with PVA increased the functional stability of the chloroplast during storage. PVA-immobilized chloroplasts preserved photosynthetic electron transport activity much better than free chloroplasts. The hydrogen production of free chloroplast decreased to 17% of initial activity after storage of six days. The hydrogen production of the PVA-immobilized chloroplast, however, showed 44% of initial activity after storage of 15 days. The maximal rate of hydrogen production was accomplished at 2$^{\circ}C$ under the light intensity above 116 $\mu$E.m-2.s-1. The amount of hydrogen produced was proportional to the chlorophyll concentration. The hydrogen production was inhibited by DCMU treatment, indicating hydrogen production is dependent on photosynthetic electron transport. These results suggest that PVA is a good candidate for the immobilization matrix of chloroplasts for the photoproduction of hydrogen.

  • PDF

Manufacture of an Ultra-Sharp Tungsten Electrode for Field-Emission Electron Beam and Its Beam Characteristics (멀티채널 방식에 의한 초미세 바늘 전극의 제작 및 빔 특성)

  • 임연찬;현정우;김성수;박철우;이종항;강승언
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.508-512
    • /
    • 2004
  • An ultra-sharp tungsten electrode for field emission was manufactured by using an electrochemical etching method, and its beam characteristics were investigated. KOH and NaOH were the electrolytes used in this research, and the taper length of the tip varied form 150 $\mu\textrm{m}$ to 250 $\mu\textrm{m}$ according to the applied voltage and the concentration of the electrolyte. The electron-beam stability was measured to be within 5% for a total emission current of 5 ${\mu}\textrm{A}$ during 4 hours of operation, and the Ignition voltages were found to be ∼300 V. The tip radius was experimentally found to be 250${\AA}$ from a linear fitting of Fowler-Nordheim plots, which was in remarkably good agreement with that of the image size from scanning ion-microscopy.

  • PDF